初始化模型应用
This commit is contained in:
		
						commit
						6a16d3fafb
					
				| 
						 | 
					@ -0,0 +1,18 @@
 | 
				
			||||||
 | 
					FROM python:3.7.7-slim-stretch
 | 
				
			||||||
 | 
					ENV PYTHONUNBUFFERED 1
 | 
				
			||||||
 | 
					RUN sed -i s@/deb.debian.org/@/mirrors.aliyun.com/@g /etc/apt/sources.list
 | 
				
			||||||
 | 
					RUN cat /etc/apt/sources.list
 | 
				
			||||||
 | 
					RUN apt-get update \
 | 
				
			||||||
 | 
					    && apt-get install -y make \
 | 
				
			||||||
 | 
					    && apt-get clean \
 | 
				
			||||||
 | 
					    && rm -rf /var/lib/apt/lists/*
 | 
				
			||||||
 | 
					RUN mkdir -p /app
 | 
				
			||||||
 | 
					WORKDIR /app
 | 
				
			||||||
 | 
					COPY requirements.txt /app
 | 
				
			||||||
 | 
					RUN python -m venv .
 | 
				
			||||||
 | 
					RUN pip install pip==20.1.1
 | 
				
			||||||
 | 
					RUN pip install setuptools==46.1.3
 | 
				
			||||||
 | 
					RUN pip install --no-cache-dir -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
 | 
				
			||||||
 | 
					COPY ./app /app
 | 
				
			||||||
 | 
					EXPOSE 5000
 | 
				
			||||||
 | 
					CMD ["gunicorn", "--bind", ":5000", "server:app"]
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,46 @@
 | 
				
			||||||
 | 
					# 道路病害检测
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 利用了cnn网络和unet网络进行道路裂缝和坑洼图片的检测. 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## API 接口
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 道路裂缝检测接口(U-Net CNN)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- 请求
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```curl -k -X POST -F 'image=@image_path/ -v http://0.0.0.0:5000/segment ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- 返回接口
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| 名称   | 参数 | 类型 | 说明 |
 | 
				
			||||||
 | 
					|------|------|-------|-------|
 | 
				
			||||||
 | 
					| 返回结果 | result | bool | 是否有裂缝 |
 | 
				
			||||||
 | 
					| 返回图片 | img | string | 图像的base64编码字符串 |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 道路坑洼检测接口(R-CNN)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```curl -k -X POST -F 'image=@image_path/ -v http://0.0.0.0:5000/detect/rcnn ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- 返回接口
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| 名称   | 参数 | 类型 | 说明 |
 | 
				
			||||||
 | 
					|------|------|-------|-------|
 | 
				
			||||||
 | 
					| 返回结果 | result | bool | 是否有坑洼 |
 | 
				
			||||||
 | 
					| 返回图片 | img | string | 图像的base64编码字符串 |
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					### 裂缝和坑洼检测接口
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```curl -k -X POST -F 'image=@image_path/ -v http://0.0.0.0:5000/ ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- 返回接口
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					| 名称   | 参数 | 类型     | 说明               |
 | 
				
			||||||
 | 
					|------|------|--------|------------------|
 | 
				
			||||||
 | 
					| 接口编码 | code | int    | 0:正常 ; 10001: 异常 |
 | 
				
			||||||
 | 
					| 原始图片 | img_src | string | 图像的base64编码字符串   |
 | 
				
			||||||
 | 
					| 是否有裂缝 | crack | bool | 是否有裂缝 |
 | 
				
			||||||
 | 
					| 是否有坑洼 | pothole | bool | 是否有坑洼 |
 | 
				
			||||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
					@ -0,0 +1,70 @@
 | 
				
			||||||
 | 
					# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					# ==============================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					"""A module for helper tensorflow ops."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import tensorflow as tf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
 | 
				
			||||||
 | 
					                                     image_width):
 | 
				
			||||||
 | 
					    """Transforms the box masks back to full image masks.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Embeds masks in bounding boxes of larger masks whose shapes correspond to
 | 
				
			||||||
 | 
					  image shape.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    box_masks: A tf.float32 tensor of size [num_masks, mask_height, mask_width].
 | 
				
			||||||
 | 
					    boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
 | 
				
			||||||
 | 
					           corners. Row i contains [ymin, xmin, ymax, xmax] of the box
 | 
				
			||||||
 | 
					           corresponding to mask i. Note that the box corners are in
 | 
				
			||||||
 | 
					           normalized coordinates.
 | 
				
			||||||
 | 
					    image_height: Image height. The output mask will have the same height as
 | 
				
			||||||
 | 
					                  the image height.
 | 
				
			||||||
 | 
					    image_width: Image width. The output mask will have the same width as the
 | 
				
			||||||
 | 
					                 image width.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  Returns:
 | 
				
			||||||
 | 
					    A tf.float32 tensor of size [num_masks, image_height, image_width].
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # TODO(rathodv): Make this a public function.
 | 
				
			||||||
 | 
					    def reframe_box_masks_to_image_masks_default():
 | 
				
			||||||
 | 
					        """The default function when there are more than 0 box masks."""
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        def transform_boxes_relative_to_boxes(boxes, reference_boxes):
 | 
				
			||||||
 | 
					            boxes = tf.reshape(boxes, [-1, 2, 2])
 | 
				
			||||||
 | 
					            min_corner = tf.expand_dims(reference_boxes[:, 0:2], 1)
 | 
				
			||||||
 | 
					            max_corner = tf.expand_dims(reference_boxes[:, 2:4], 1)
 | 
				
			||||||
 | 
					            transformed_boxes = (boxes - min_corner) / (max_corner - min_corner)
 | 
				
			||||||
 | 
					            return tf.reshape(transformed_boxes, [-1, 4])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        box_masks_expanded = tf.expand_dims(box_masks, axis=3)
 | 
				
			||||||
 | 
					        num_boxes = tf.shape(box_masks_expanded)[0]
 | 
				
			||||||
 | 
					        unit_boxes = tf.concat(
 | 
				
			||||||
 | 
					            [tf.zeros([num_boxes, 2]), tf.ones([num_boxes, 2])], axis=1)
 | 
				
			||||||
 | 
					        reverse_boxes = transform_boxes_relative_to_boxes(unit_boxes, boxes)
 | 
				
			||||||
 | 
					        return tf.image.crop_and_resize(
 | 
				
			||||||
 | 
					            image=box_masks_expanded,
 | 
				
			||||||
 | 
					            boxes=reverse_boxes,
 | 
				
			||||||
 | 
					            box_ind=tf.range(num_boxes),
 | 
				
			||||||
 | 
					            crop_size=[image_height, image_width],
 | 
				
			||||||
 | 
					            extrapolation_value=0.0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    image_masks = tf.cond(
 | 
				
			||||||
 | 
					        tf.shape(box_masks)[0] > 0,
 | 
				
			||||||
 | 
					        reframe_box_masks_to_image_masks_default,
 | 
				
			||||||
 | 
					        lambda: tf.zeros([0, image_height, image_width, 1], dtype=tf.float32))
 | 
				
			||||||
 | 
					    return tf.squeeze(image_masks, axis=3)
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,27 @@
 | 
				
			||||||
 | 
					import tensorflow as tf
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def serve_unet_model():
 | 
				
			||||||
 | 
					    TFLITE_MODEL = "/app/UNet_25_Crack.tflite"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    tflite_interpreter = tf.lite.Interpreter(model_path=TFLITE_MODEL)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    input_details = tflite_interpreter.get_input_details()
 | 
				
			||||||
 | 
					    output_details = tflite_interpreter.get_output_details()
 | 
				
			||||||
 | 
					    tflite_interpreter.allocate_tensors()
 | 
				
			||||||
 | 
					    height = input_details[0]['shape'][1]
 | 
				
			||||||
 | 
					    width = input_details[0]['shape'][2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return tflite_interpreter, height, width, input_details, output_details
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def serve_rcnn_model():
 | 
				
			||||||
 | 
					    detection_graph = tf.Graph()
 | 
				
			||||||
 | 
					    with detection_graph.as_default():
 | 
				
			||||||
 | 
					        od_graph_def = tf.compat.v1.GraphDef()
 | 
				
			||||||
 | 
					        with tf.compat.v1.gfile.GFile("/app/frozen_inference_graph.pb", 'rb') as fid:
 | 
				
			||||||
 | 
					            serialized_graph = fid.read()
 | 
				
			||||||
 | 
					            od_graph_def.ParseFromString(serialized_graph)
 | 
				
			||||||
 | 
					            tf.import_graph_def(od_graph_def, name='')
 | 
				
			||||||
 | 
					    return detection_graph
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,239 @@
 | 
				
			||||||
 | 
					import base64
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import flask
 | 
				
			||||||
 | 
					from flask import Flask, jsonify
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import io
 | 
				
			||||||
 | 
					from PIL import Image, ImageDraw
 | 
				
			||||||
 | 
					import tensorflow as tf
 | 
				
			||||||
 | 
					import ops as utils_ops
 | 
				
			||||||
 | 
					import visualization_utils as vis_util
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from serve import serve_unet_model
 | 
				
			||||||
 | 
					from serve import serve_rcnn_model
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					app = Flask(__name__)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def load_unet_model():
 | 
				
			||||||
 | 
					    global tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c
 | 
				
			||||||
 | 
					    tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c = serve_unet_model()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def load_rcnn_model():
 | 
				
			||||||
 | 
					    global detection_graph
 | 
				
			||||||
 | 
					    detection_graph = serve_rcnn_model()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					load_unet_model()
 | 
				
			||||||
 | 
					load_rcnn_model()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def prepare_img(image, type):
 | 
				
			||||||
 | 
					    if type == "detect":
 | 
				
			||||||
 | 
					        return image.resize((width, height))
 | 
				
			||||||
 | 
					    elif type == "segment":
 | 
				
			||||||
 | 
					        return image.resize((width_c, height_c))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def load_image_into_numpy_array(image):
 | 
				
			||||||
 | 
					    (im_width, im_height) = image.size
 | 
				
			||||||
 | 
					    return np.array(image.getdata()).reshape(
 | 
				
			||||||
 | 
					        (im_height, im_width, 3)).astype(np.uint8)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@app.route("/detect/rcnn", methods=["POST"])
 | 
				
			||||||
 | 
					def detect_rcnn():
 | 
				
			||||||
 | 
					    if flask.request.method == "POST":
 | 
				
			||||||
 | 
					        if flask.request.files.get("image"):
 | 
				
			||||||
 | 
					            image = Image.open(flask.request.files["image"])
 | 
				
			||||||
 | 
					            image_np = load_image_into_numpy_array(image)
 | 
				
			||||||
 | 
					            # image_np_expanded = np.expand_dims(image_np, axis=0)
 | 
				
			||||||
 | 
					            output_dict = run_inference_for_single_image(image_np, detection_graph)
 | 
				
			||||||
 | 
					            category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}}
 | 
				
			||||||
 | 
					            print(output_dict.get('detection_masks'))
 | 
				
			||||||
 | 
					            i, is_crack = vis_util.visualize_boxes_and_labels_on_image_array(
 | 
				
			||||||
 | 
					                image_np,
 | 
				
			||||||
 | 
					                output_dict['detection_boxes'],
 | 
				
			||||||
 | 
					                output_dict['detection_classes'],
 | 
				
			||||||
 | 
					                output_dict['detection_scores'],
 | 
				
			||||||
 | 
					                category_index,
 | 
				
			||||||
 | 
					                instance_masks=output_dict.get('detection_masks'),
 | 
				
			||||||
 | 
					                use_normalized_coordinates=True,
 | 
				
			||||||
 | 
					                line_thickness=8,
 | 
				
			||||||
 | 
					                skip_scores=True,
 | 
				
			||||||
 | 
					                skip_labels=True)
 | 
				
			||||||
 | 
					            img = Image.fromarray(image_np.astype("uint8"))
 | 
				
			||||||
 | 
					            img = img.resize((128, 128))
 | 
				
			||||||
 | 
					            raw_bytes = io.BytesIO()
 | 
				
			||||||
 | 
					            img.save(raw_bytes, "JPEG")
 | 
				
			||||||
 | 
					            raw_bytes.seek(0)
 | 
				
			||||||
 | 
					            img_byte = raw_bytes.getvalue()
 | 
				
			||||||
 | 
					            img_str = base64.b64encode(img_byte)
 | 
				
			||||||
 | 
					            data = {
 | 
				
			||||||
 | 
					                "result": is_crack,
 | 
				
			||||||
 | 
					                "img": img_str.decode('utf-8')
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					            return jsonify(data)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            return "Could not find image"
 | 
				
			||||||
 | 
					    return "Please use POST method"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@app.route("/segment", methods=["POST"])
 | 
				
			||||||
 | 
					def segment():
 | 
				
			||||||
 | 
					    if flask.request.method == "POST":
 | 
				
			||||||
 | 
					        if flask.request.files.get("image"):
 | 
				
			||||||
 | 
					            # read the image in PIL format
 | 
				
			||||||
 | 
					            img = prepare_img(Image.open(flask.request.files["image"]), "segment")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            input_data = np.expand_dims(img, axis=0)
 | 
				
			||||||
 | 
					            input_data = np.float32(input_data) / 255.0
 | 
				
			||||||
 | 
					            tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data)
 | 
				
			||||||
 | 
					            tflite_interpreter_c.invoke()
 | 
				
			||||||
 | 
					            result = tflite_interpreter_c.get_tensor(output_details_c[0]['index'])
 | 
				
			||||||
 | 
					            result = result > 0.5
 | 
				
			||||||
 | 
					            result = result * 255
 | 
				
			||||||
 | 
					            mask = np.squeeze(result)
 | 
				
			||||||
 | 
					            bg = np.asarray(img).copy()
 | 
				
			||||||
 | 
					            is_crack = False
 | 
				
			||||||
 | 
					            for i in range(len(mask)):
 | 
				
			||||||
 | 
					                for j in range(len(mask[i])):
 | 
				
			||||||
 | 
					                    if mask[i][j] > 0:
 | 
				
			||||||
 | 
					                        bg[i][j][0] = 0
 | 
				
			||||||
 | 
					                        bg[i][j][1] = 0
 | 
				
			||||||
 | 
					                        bg[i][j][2] = 255
 | 
				
			||||||
 | 
					                        is_crack = True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            img = Image.fromarray(bg.astype("uint8"))
 | 
				
			||||||
 | 
					            raw_bytes = io.BytesIO()
 | 
				
			||||||
 | 
					            img.save(raw_bytes, "JPEG")
 | 
				
			||||||
 | 
					            raw_bytes.seek(0)
 | 
				
			||||||
 | 
					            img_byte = raw_bytes.getvalue()
 | 
				
			||||||
 | 
					            img_str = base64.b64encode(img_byte)
 | 
				
			||||||
 | 
					            data = {
 | 
				
			||||||
 | 
					                "result": is_crack,
 | 
				
			||||||
 | 
					                "img": img_str.decode('utf-8')
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					            return jsonify(data)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            return "Could not find image"
 | 
				
			||||||
 | 
					    return "Please use POST method"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_inference_for_single_image(image, graph):
 | 
				
			||||||
 | 
					    with graph.as_default():
 | 
				
			||||||
 | 
					        with tf.compat.v1.Session() as sess:
 | 
				
			||||||
 | 
					            # Get handles to input and output tensors
 | 
				
			||||||
 | 
					            ops = tf.compat.v1.get_default_graph().get_operations()
 | 
				
			||||||
 | 
					            all_tensor_names = {
 | 
				
			||||||
 | 
					                output.name for op in ops for output in op.outputs}
 | 
				
			||||||
 | 
					            tensor_dict = {}
 | 
				
			||||||
 | 
					            for key in [
 | 
				
			||||||
 | 
					                'num_detections', 'detection_boxes', 'detection_scores',
 | 
				
			||||||
 | 
					                'detection_classes', 'detection_masks'
 | 
				
			||||||
 | 
					            ]:
 | 
				
			||||||
 | 
					                tensor_name = key + ':0'
 | 
				
			||||||
 | 
					                if tensor_name in all_tensor_names:
 | 
				
			||||||
 | 
					                    tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
 | 
				
			||||||
 | 
					                        tensor_name)
 | 
				
			||||||
 | 
					            if 'detection_masks' in tensor_dict:
 | 
				
			||||||
 | 
					                # The following processing is only for single image
 | 
				
			||||||
 | 
					                detection_boxes = tf.squeeze(
 | 
				
			||||||
 | 
					                    tensor_dict['detection_boxes'], [0])
 | 
				
			||||||
 | 
					                detection_masks = tf.squeeze(
 | 
				
			||||||
 | 
					                    tensor_dict['detection_masks'], [0])
 | 
				
			||||||
 | 
					                # Reframe is required to translate mask from box coordinates to image coordinates and fit the image
 | 
				
			||||||
 | 
					                # size.
 | 
				
			||||||
 | 
					                real_num_detection = tf.cast(
 | 
				
			||||||
 | 
					                    tensor_dict['num_detections'][0], tf.int32)
 | 
				
			||||||
 | 
					                detection_boxes = tf.slice(detection_boxes, [0, 0], [
 | 
				
			||||||
 | 
					                    real_num_detection, -1])
 | 
				
			||||||
 | 
					                detection_masks = tf.slice(detection_masks, [0, 0, 0], [
 | 
				
			||||||
 | 
					                    real_num_detection, -1, -1])
 | 
				
			||||||
 | 
					                detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
 | 
				
			||||||
 | 
					                    detection_masks, detection_boxes, image.shape[0], image.shape[1])
 | 
				
			||||||
 | 
					                detection_masks_reframed = tf.cast(
 | 
				
			||||||
 | 
					                    tf.greater(detection_masks_reframed, 0.5), tf.uint8)
 | 
				
			||||||
 | 
					                # Follow the convention by adding back the batch dimension
 | 
				
			||||||
 | 
					                tensor_dict['detection_masks'] = tf.expand_dims(
 | 
				
			||||||
 | 
					                    detection_masks_reframed, 0)
 | 
				
			||||||
 | 
					            image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # Run inference
 | 
				
			||||||
 | 
					            output_dict = sess.run(tensor_dict,
 | 
				
			||||||
 | 
					                                   feed_dict={image_tensor: np.expand_dims(image, 0)})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # all outputs are float32 numpy arrays, so convert types as appropriate
 | 
				
			||||||
 | 
					            output_dict['num_detections'] = int(
 | 
				
			||||||
 | 
					                output_dict['num_detections'][0])
 | 
				
			||||||
 | 
					            output_dict['detection_classes'] = output_dict[
 | 
				
			||||||
 | 
					                'detection_classes'][0].astype(np.uint8)
 | 
				
			||||||
 | 
					            output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
 | 
				
			||||||
 | 
					            output_dict['detection_scores'] = output_dict['detection_scores'][0]
 | 
				
			||||||
 | 
					            if 'detection_masks' in output_dict:
 | 
				
			||||||
 | 
					                output_dict['detection_masks'] = output_dict['detection_masks'][0]
 | 
				
			||||||
 | 
					    return output_dict
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					@app.route('/', methods=["POST"])
 | 
				
			||||||
 | 
					def index():
 | 
				
			||||||
 | 
					    if flask.request.method == "POST":
 | 
				
			||||||
 | 
					        if flask.request.files.get("image"):
 | 
				
			||||||
 | 
					            img_src = Image.open(flask.request.files["image"])
 | 
				
			||||||
 | 
					            # start crack detection
 | 
				
			||||||
 | 
					            img_segment = prepare_img(img_src, "segment")
 | 
				
			||||||
 | 
					            input_data = np.expand_dims(img_segment, axis=0)
 | 
				
			||||||
 | 
					            input_data = np.float32(input_data) / 255.0
 | 
				
			||||||
 | 
					            tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data)
 | 
				
			||||||
 | 
					            tflite_interpreter_c.invoke()
 | 
				
			||||||
 | 
					            result = tflite_interpreter_c.get_tensor(output_details_c[0]['index'])
 | 
				
			||||||
 | 
					            result = result > 0.5
 | 
				
			||||||
 | 
					            result = result * 255
 | 
				
			||||||
 | 
					            mask = np.squeeze(result)
 | 
				
			||||||
 | 
					            is_crack = False
 | 
				
			||||||
 | 
					            for i in range(len(mask)):
 | 
				
			||||||
 | 
					                for j in range(len(mask[i])):
 | 
				
			||||||
 | 
					                    if mask[i][j] > 0:
 | 
				
			||||||
 | 
					                        is_crack = True
 | 
				
			||||||
 | 
					                        break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # start pothole detection
 | 
				
			||||||
 | 
					            image_np = load_image_into_numpy_array(img_src)
 | 
				
			||||||
 | 
					            # image_np_expanded = np.expand_dims(image_np, axis=0)
 | 
				
			||||||
 | 
					            output_dict = run_inference_for_single_image(image_np, detection_graph)
 | 
				
			||||||
 | 
					            category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}}
 | 
				
			||||||
 | 
					            _, is_pothole = vis_util.visualize_boxes_and_labels_on_image_array(
 | 
				
			||||||
 | 
					                image_np,
 | 
				
			||||||
 | 
					                output_dict['detection_boxes'],
 | 
				
			||||||
 | 
					                output_dict['detection_classes'],
 | 
				
			||||||
 | 
					                output_dict['detection_scores'],
 | 
				
			||||||
 | 
					                category_index,
 | 
				
			||||||
 | 
					                instance_masks=output_dict.get('detection_masks'),
 | 
				
			||||||
 | 
					                use_normalized_coordinates=True,
 | 
				
			||||||
 | 
					                line_thickness=8,
 | 
				
			||||||
 | 
					                skip_scores=True,
 | 
				
			||||||
 | 
					                skip_labels=True)
 | 
				
			||||||
 | 
					            raw_bytes = io.BytesIO()
 | 
				
			||||||
 | 
					            img_src.save(raw_bytes, "JPEG")
 | 
				
			||||||
 | 
					            raw_bytes.seek(0)
 | 
				
			||||||
 | 
					            img_byte = raw_bytes.getvalue()
 | 
				
			||||||
 | 
					            img_str = base64.b64encode(img_byte)
 | 
				
			||||||
 | 
					            data = {
 | 
				
			||||||
 | 
					                "code": 0,
 | 
				
			||||||
 | 
					                "crack": is_crack,
 | 
				
			||||||
 | 
					                "pothole": is_pothole,
 | 
				
			||||||
 | 
					                "img_src": img_str.decode('utf-8')
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					            return jsonify(data)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            data = {
 | 
				
			||||||
 | 
					                "code": 10001,
 | 
				
			||||||
 | 
					                "msg": "Could not find image"
 | 
				
			||||||
 | 
					            }
 | 
				
			||||||
 | 
					            return jsonify(data)
 | 
				
			||||||
 | 
					    return "Road Damage Detection"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == "__main__":
 | 
				
			||||||
 | 
					    app.run()
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,508 @@
 | 
				
			||||||
 | 
					# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					# ==============================================================================
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					"""A set of functions that are used for visualization.
 | 
				
			||||||
 | 
					These functions often receive an image, perform some visualization on the image.
 | 
				
			||||||
 | 
					The functions do not return a value, instead they modify the image itself.
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					import abc
 | 
				
			||||||
 | 
					import collections
 | 
				
			||||||
 | 
					# Set headless-friendly backend.
 | 
				
			||||||
 | 
					import matplotlib;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					matplotlib.use('Agg')  # pylint: disable=multiple-statements
 | 
				
			||||||
 | 
					import matplotlib.pyplot as plt  # pylint: disable=g-import-not-at-top
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import PIL.Image as Image
 | 
				
			||||||
 | 
					import PIL.ImageColor as ImageColor
 | 
				
			||||||
 | 
					import PIL.ImageDraw as ImageDraw
 | 
				
			||||||
 | 
					import PIL.ImageFont as ImageFont
 | 
				
			||||||
 | 
					import six
 | 
				
			||||||
 | 
					from six.moves import range
 | 
				
			||||||
 | 
					from six.moves import zip
 | 
				
			||||||
 | 
					import tensorflow as tf
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					_TITLE_LEFT_MARGIN = 10
 | 
				
			||||||
 | 
					_TITLE_TOP_MARGIN = 10
 | 
				
			||||||
 | 
					STANDARD_COLORS = [
 | 
				
			||||||
 | 
					    'AliceBlue', 'Chartreuse', 'Aqua', 'Aquamarine', 'Azure', 'Beige', 'Bisque',
 | 
				
			||||||
 | 
					    'BlanchedAlmond', 'BlueViolet', 'BurlyWood', 'CadetBlue', 'AntiqueWhite',
 | 
				
			||||||
 | 
					    'Chocolate', 'Coral', 'CornflowerBlue', 'Cornsilk', 'Crimson', 'Cyan',
 | 
				
			||||||
 | 
					    'DarkCyan', 'DarkGoldenRod', 'DarkGrey', 'DarkKhaki', 'DarkOrange',
 | 
				
			||||||
 | 
					    'DarkOrchid', 'DarkSalmon', 'DarkSeaGreen', 'DarkTurquoise', 'DarkViolet',
 | 
				
			||||||
 | 
					    'DeepPink', 'DeepSkyBlue', 'DodgerBlue', 'FireBrick', 'FloralWhite',
 | 
				
			||||||
 | 
					    'ForestGreen', 'Fuchsia', 'Gainsboro', 'GhostWhite', 'Gold', 'GoldenRod',
 | 
				
			||||||
 | 
					    'Salmon', 'Tan', 'HoneyDew', 'HotPink', 'IndianRed', 'Ivory', 'Khaki',
 | 
				
			||||||
 | 
					    'Lavender', 'LavenderBlush', 'LawnGreen', 'LemonChiffon', 'LightBlue',
 | 
				
			||||||
 | 
					    'LightCoral', 'LightCyan', 'LightGoldenRodYellow', 'LightGray', 'LightGrey',
 | 
				
			||||||
 | 
					    'LightGreen', 'LightPink', 'LightSalmon', 'LightSeaGreen', 'LightSkyBlue',
 | 
				
			||||||
 | 
					    'LightSlateGray', 'LightSlateGrey', 'LightSteelBlue', 'LightYellow', 'Lime',
 | 
				
			||||||
 | 
					    'LimeGreen', 'Linen', 'Magenta', 'MediumAquaMarine', 'MediumOrchid',
 | 
				
			||||||
 | 
					    'MediumPurple', 'MediumSeaGreen', 'MediumSlateBlue', 'MediumSpringGreen',
 | 
				
			||||||
 | 
					    'MediumTurquoise', 'MediumVioletRed', 'MintCream', 'MistyRose', 'Moccasin',
 | 
				
			||||||
 | 
					    'NavajoWhite', 'OldLace', 'Olive', 'OliveDrab', 'Orange', 'OrangeRed',
 | 
				
			||||||
 | 
					    'Orchid', 'PaleGoldenRod', 'PaleGreen', 'PaleTurquoise', 'PaleVioletRed',
 | 
				
			||||||
 | 
					    'PapayaWhip', 'PeachPuff', 'Peru', 'Pink', 'Plum', 'PowderBlue', 'Purple',
 | 
				
			||||||
 | 
					    'Red', 'RosyBrown', 'RoyalBlue', 'SaddleBrown', 'Green', 'SandyBrown',
 | 
				
			||||||
 | 
					    'SeaGreen', 'SeaShell', 'Sienna', 'Silver', 'SkyBlue', 'SlateBlue',
 | 
				
			||||||
 | 
					    'SlateGray', 'SlateGrey', 'Snow', 'SpringGreen', 'SteelBlue', 'GreenYellow',
 | 
				
			||||||
 | 
					    'Teal', 'Thistle', 'Tomato', 'Turquoise', 'Violet', 'Wheat', 'White',
 | 
				
			||||||
 | 
					    'WhiteSmoke', 'Yellow', 'YellowGreen'
 | 
				
			||||||
 | 
					]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def _get_multiplier_for_color_randomness():
 | 
				
			||||||
 | 
					    """Returns a multiplier to get semi-random colors from successive indices.
 | 
				
			||||||
 | 
					  This function computes a prime number, p, in the range [2, 17] that:
 | 
				
			||||||
 | 
					  - is closest to len(STANDARD_COLORS) / 10
 | 
				
			||||||
 | 
					  - does not divide len(STANDARD_COLORS)
 | 
				
			||||||
 | 
					  If no prime numbers in that range satisfy the constraints, p is returned as 1.
 | 
				
			||||||
 | 
					  Once p is established, it can be used as a multiplier to select
 | 
				
			||||||
 | 
					  non-consecutive colors from STANDARD_COLORS:
 | 
				
			||||||
 | 
					  colors = [(p * i) % len(STANDARD_COLORS) for i in range(20)]
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    num_colors = len(STANDARD_COLORS)
 | 
				
			||||||
 | 
					    prime_candidates = [5, 7, 11, 13, 17]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Remove all prime candidates that divide the number of colors.
 | 
				
			||||||
 | 
					    prime_candidates = [p for p in prime_candidates if num_colors % p]
 | 
				
			||||||
 | 
					    if not prime_candidates:
 | 
				
			||||||
 | 
					        return 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Return the closest prime number to num_colors / 10.
 | 
				
			||||||
 | 
					    abs_distance = [np.abs(num_colors / 10. - p) for p in prime_candidates]
 | 
				
			||||||
 | 
					    num_candidates = len(abs_distance)
 | 
				
			||||||
 | 
					    inds = [i for _, i in sorted(zip(abs_distance, range(num_candidates)))]
 | 
				
			||||||
 | 
					    return prime_candidates[inds[0]]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def draw_bounding_box_on_image_array(image,
 | 
				
			||||||
 | 
					                                     ymin,
 | 
				
			||||||
 | 
					                                     xmin,
 | 
				
			||||||
 | 
					                                     ymax,
 | 
				
			||||||
 | 
					                                     xmax,
 | 
				
			||||||
 | 
					                                     color='red',
 | 
				
			||||||
 | 
					                                     thickness=4,
 | 
				
			||||||
 | 
					                                     display_str_list=(),
 | 
				
			||||||
 | 
					                                     use_normalized_coordinates=True):
 | 
				
			||||||
 | 
					    """Adds a bounding box to an image (numpy array).
 | 
				
			||||||
 | 
					  Bounding box coordinates can be specified in either absolute (pixel) or
 | 
				
			||||||
 | 
					  normalized coordinates by setting the use_normalized_coordinates argument.
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    image: a numpy array with shape [height, width, 3].
 | 
				
			||||||
 | 
					    ymin: ymin of bounding box.
 | 
				
			||||||
 | 
					    xmin: xmin of bounding box.
 | 
				
			||||||
 | 
					    ymax: ymax of bounding box.
 | 
				
			||||||
 | 
					    xmax: xmax of bounding box.
 | 
				
			||||||
 | 
					    color: color to draw bounding box. Default is red.
 | 
				
			||||||
 | 
					    thickness: line thickness. Default value is 4.
 | 
				
			||||||
 | 
					    display_str_list: list of strings to display in box
 | 
				
			||||||
 | 
					                      (each to be shown on its own line).
 | 
				
			||||||
 | 
					    use_normalized_coordinates: If True (default), treat coordinates
 | 
				
			||||||
 | 
					      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
 | 
				
			||||||
 | 
					      coordinates as absolute.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
 | 
				
			||||||
 | 
					    draw_bounding_box_on_image(image_pil, ymin, xmin, ymax, xmax, color,
 | 
				
			||||||
 | 
					                               thickness, display_str_list,
 | 
				
			||||||
 | 
					                               use_normalized_coordinates)
 | 
				
			||||||
 | 
					    np.copyto(image, np.array(image_pil))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def draw_bounding_box_on_image(image,
 | 
				
			||||||
 | 
					                               ymin,
 | 
				
			||||||
 | 
					                               xmin,
 | 
				
			||||||
 | 
					                               ymax,
 | 
				
			||||||
 | 
					                               xmax,
 | 
				
			||||||
 | 
					                               color='red',
 | 
				
			||||||
 | 
					                               thickness=4,
 | 
				
			||||||
 | 
					                               display_str_list=(),
 | 
				
			||||||
 | 
					                               use_normalized_coordinates=True):
 | 
				
			||||||
 | 
					    """Adds a bounding box to an image.
 | 
				
			||||||
 | 
					  Bounding box coordinates can be specified in either absolute (pixel) or
 | 
				
			||||||
 | 
					  normalized coordinates by setting the use_normalized_coordinates argument.
 | 
				
			||||||
 | 
					  Each string in display_str_list is displayed on a separate line above the
 | 
				
			||||||
 | 
					  bounding box in black text on a rectangle filled with the input 'color'.
 | 
				
			||||||
 | 
					  If the top of the bounding box extends to the edge of the image, the strings
 | 
				
			||||||
 | 
					  are displayed below the bounding box.
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    image: a PIL.Image object.
 | 
				
			||||||
 | 
					    ymin: ymin of bounding box.
 | 
				
			||||||
 | 
					    xmin: xmin of bounding box.
 | 
				
			||||||
 | 
					    ymax: ymax of bounding box.
 | 
				
			||||||
 | 
					    xmax: xmax of bounding box.
 | 
				
			||||||
 | 
					    color: color to draw bounding box. Default is red.
 | 
				
			||||||
 | 
					    thickness: line thickness. Default value is 4.
 | 
				
			||||||
 | 
					    display_str_list: list of strings to display in box
 | 
				
			||||||
 | 
					                      (each to be shown on its own line).
 | 
				
			||||||
 | 
					    use_normalized_coordinates: If True (default), treat coordinates
 | 
				
			||||||
 | 
					      ymin, xmin, ymax, xmax as relative to the image.  Otherwise treat
 | 
				
			||||||
 | 
					      coordinates as absolute.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    draw = ImageDraw.Draw(image)
 | 
				
			||||||
 | 
					    im_width, im_height = image.size
 | 
				
			||||||
 | 
					    if use_normalized_coordinates:
 | 
				
			||||||
 | 
					        (left, right, top, bottom) = (xmin * im_width, xmax * im_width,
 | 
				
			||||||
 | 
					                                      ymin * im_height, ymax * im_height)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        (left, right, top, bottom) = (xmin, xmax, ymin, ymax)
 | 
				
			||||||
 | 
					    if thickness > 0:
 | 
				
			||||||
 | 
					        draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
 | 
				
			||||||
 | 
					                   (left, top)],
 | 
				
			||||||
 | 
					                  width=thickness,
 | 
				
			||||||
 | 
					                  fill=color)
 | 
				
			||||||
 | 
					    try:
 | 
				
			||||||
 | 
					        font = ImageFont.truetype('arial.ttf', 24)
 | 
				
			||||||
 | 
					    except IOError:
 | 
				
			||||||
 | 
					        font = ImageFont.load_default()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # If the total height of the display strings added to the top of the bounding
 | 
				
			||||||
 | 
					    # box exceeds the top of the image, stack the strings below the bounding box
 | 
				
			||||||
 | 
					    # instead of above.
 | 
				
			||||||
 | 
					    display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
 | 
				
			||||||
 | 
					    # Each display_str has a top and bottom margin of 0.05x.
 | 
				
			||||||
 | 
					    total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if top > total_display_str_height:
 | 
				
			||||||
 | 
					        text_bottom = top
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        text_bottom = bottom + total_display_str_height
 | 
				
			||||||
 | 
					    # Reverse list and print from bottom to top.
 | 
				
			||||||
 | 
					    for display_str in display_str_list[::-1]:
 | 
				
			||||||
 | 
					        text_width, text_height = font.getsize(display_str)
 | 
				
			||||||
 | 
					        margin = np.ceil(0.05 * text_height)
 | 
				
			||||||
 | 
					        draw.rectangle(
 | 
				
			||||||
 | 
					            [(left, text_bottom - text_height - 2 * margin), (left + text_width,
 | 
				
			||||||
 | 
					                                                              text_bottom)],
 | 
				
			||||||
 | 
					            fill=color)
 | 
				
			||||||
 | 
					        draw.text(
 | 
				
			||||||
 | 
					            (left + margin, text_bottom - text_height - margin),
 | 
				
			||||||
 | 
					            display_str,
 | 
				
			||||||
 | 
					            fill='black',
 | 
				
			||||||
 | 
					            font=font)
 | 
				
			||||||
 | 
					        text_bottom -= text_height - 2 * margin
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def draw_keypoints_on_image_array(image,
 | 
				
			||||||
 | 
					                                  key_points,
 | 
				
			||||||
 | 
					                                  keypoint_scores=None,
 | 
				
			||||||
 | 
					                                  min_score_thresh=0.5,
 | 
				
			||||||
 | 
					                                  color='red',
 | 
				
			||||||
 | 
					                                  radius=2,
 | 
				
			||||||
 | 
					                                  use_normalized_coordinates=True,
 | 
				
			||||||
 | 
					                                  keypoint_edges=None,
 | 
				
			||||||
 | 
					                                  keypoint_edge_color='green',
 | 
				
			||||||
 | 
					                                  keypoint_edge_width=2):
 | 
				
			||||||
 | 
					    """Draws keypoints on an image (numpy array).
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    image: a numpy array with shape [height, width, 3].
 | 
				
			||||||
 | 
					    key_points: a numpy array with shape [num_keypoints, 2].
 | 
				
			||||||
 | 
					    keypoint_scores: a numpy array with shape [num_keypoints]. If provided, only
 | 
				
			||||||
 | 
					      those keypoints with a score above score_threshold will be visualized.
 | 
				
			||||||
 | 
					    min_score_thresh: A scalar indicating the minimum keypoint score required
 | 
				
			||||||
 | 
					      for a keypoint to be visualized. Note that keypoint_scores must be
 | 
				
			||||||
 | 
					      provided for this threshold to take effect.
 | 
				
			||||||
 | 
					    color: color to draw the keypoints with. Default is red.
 | 
				
			||||||
 | 
					    radius: keypoint radius. Default value is 2.
 | 
				
			||||||
 | 
					    use_normalized_coordinates: if True (default), treat keypoint values as
 | 
				
			||||||
 | 
					      relative to the image.  Otherwise treat them as absolute.
 | 
				
			||||||
 | 
					    keypoint_edges: A list of tuples with keypoint indices that specify which
 | 
				
			||||||
 | 
					      keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
 | 
				
			||||||
 | 
					      edges from keypoint 0 to 1 and from keypoint 2 to 4.
 | 
				
			||||||
 | 
					    keypoint_edge_color: color to draw the keypoint edges with. Default is red.
 | 
				
			||||||
 | 
					    keypoint_edge_width: width of the edges drawn between keypoints. Default
 | 
				
			||||||
 | 
					      value is 2.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    image_pil = Image.fromarray(np.uint8(image)).convert('RGB')
 | 
				
			||||||
 | 
					    draw_keypoints_on_image(image_pil,
 | 
				
			||||||
 | 
					                            key_points,
 | 
				
			||||||
 | 
					                            keypoint_scores=keypoint_scores,
 | 
				
			||||||
 | 
					                            min_score_thresh=min_score_thresh,
 | 
				
			||||||
 | 
					                            color=color,
 | 
				
			||||||
 | 
					                            radius=radius,
 | 
				
			||||||
 | 
					                            use_normalized_coordinates=use_normalized_coordinates,
 | 
				
			||||||
 | 
					                            keypoint_edges=keypoint_edges,
 | 
				
			||||||
 | 
					                            keypoint_edge_color=keypoint_edge_color,
 | 
				
			||||||
 | 
					                            keypoint_edge_width=keypoint_edge_width)
 | 
				
			||||||
 | 
					    np.copyto(image, np.array(image_pil))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def draw_keypoints_on_image(image,
 | 
				
			||||||
 | 
					                            key_points,
 | 
				
			||||||
 | 
					                            keypoint_scores=None,
 | 
				
			||||||
 | 
					                            min_score_thresh=0.5,
 | 
				
			||||||
 | 
					                            color='red',
 | 
				
			||||||
 | 
					                            radius=2,
 | 
				
			||||||
 | 
					                            use_normalized_coordinates=True,
 | 
				
			||||||
 | 
					                            keypoint_edges=None,
 | 
				
			||||||
 | 
					                            keypoint_edge_color='green',
 | 
				
			||||||
 | 
					                            keypoint_edge_width=2):
 | 
				
			||||||
 | 
					    """Draws keypoints on an image.
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    image: a PIL.Image object.
 | 
				
			||||||
 | 
					    key_points: a numpy array with shape [num_keypoints, 2].
 | 
				
			||||||
 | 
					    keypoint_scores: a numpy array with shape [num_keypoints].
 | 
				
			||||||
 | 
					    min_score_thresh: a score threshold for visualizing keypoints. Only used if
 | 
				
			||||||
 | 
					      keypoint_scores is provided.
 | 
				
			||||||
 | 
					    color: color to draw the keypoints with. Default is red.
 | 
				
			||||||
 | 
					    radius: keypoint radius. Default value is 2.
 | 
				
			||||||
 | 
					    use_normalized_coordinates: if True (default), treat keypoint values as
 | 
				
			||||||
 | 
					      relative to the image.  Otherwise treat them as absolute.
 | 
				
			||||||
 | 
					    keypoint_edges: A list of tuples with keypoint indices that specify which
 | 
				
			||||||
 | 
					      keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
 | 
				
			||||||
 | 
					      edges from keypoint 0 to 1 and from keypoint 2 to 4.
 | 
				
			||||||
 | 
					    keypoint_edge_color: color to draw the keypoint edges with. Default is red.
 | 
				
			||||||
 | 
					    keypoint_edge_width: width of the edges drawn between keypoints. Default
 | 
				
			||||||
 | 
					      value is 2.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    draw = ImageDraw.Draw(image)
 | 
				
			||||||
 | 
					    im_width, im_height = image.size
 | 
				
			||||||
 | 
					    key_points = np.array(key_points)
 | 
				
			||||||
 | 
					    key_points_x = [k[1] for k in key_points]
 | 
				
			||||||
 | 
					    key_points_y = [k[0] for k in key_points]
 | 
				
			||||||
 | 
					    if use_normalized_coordinates:
 | 
				
			||||||
 | 
					        key_points_x = tuple([im_width * x for x in key_points_x])
 | 
				
			||||||
 | 
					        key_points_y = tuple([im_height * y for y in key_points_y])
 | 
				
			||||||
 | 
					    if keypoint_scores is not None:
 | 
				
			||||||
 | 
					        keypoint_scores = np.array(keypoint_scores)
 | 
				
			||||||
 | 
					        valid_kpt = np.greater(keypoint_scores, min_score_thresh)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        valid_kpt = np.where(np.any(np.isnan(key_points), axis=1),
 | 
				
			||||||
 | 
					                             np.zeros_like(key_points[:, 0]),
 | 
				
			||||||
 | 
					                             np.ones_like(key_points[:, 0]))
 | 
				
			||||||
 | 
					    valid_kpt = [v for v in valid_kpt]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for keypoint_x, keypoint_y, valid in zip(key_points_x, key_points_y, valid_kpt):
 | 
				
			||||||
 | 
					        if valid:
 | 
				
			||||||
 | 
					            draw.ellipse([(keypoint_x - radius, keypoint_y - radius),
 | 
				
			||||||
 | 
					                          (keypoint_x + radius, keypoint_y + radius)],
 | 
				
			||||||
 | 
					                         outline=color, fill=color)
 | 
				
			||||||
 | 
					    if keypoint_edges is not None:
 | 
				
			||||||
 | 
					        for keypoint_start, keypoint_end in keypoint_edges:
 | 
				
			||||||
 | 
					            if (keypoint_start < 0 or keypoint_start >= len(key_points) or
 | 
				
			||||||
 | 
					                    keypoint_end < 0 or keypoint_end >= len(key_points)):
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            if not (valid_kpt[keypoint_start] and valid_kpt[keypoint_end]):
 | 
				
			||||||
 | 
					                continue
 | 
				
			||||||
 | 
					            edge_coordinates = [
 | 
				
			||||||
 | 
					                key_points_x[keypoint_start], key_points_y[keypoint_start],
 | 
				
			||||||
 | 
					                key_points_x[keypoint_end], key_points_y[keypoint_end]
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					            draw.line(
 | 
				
			||||||
 | 
					                edge_coordinates, fill=keypoint_edge_color, width=keypoint_edge_width)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
 | 
				
			||||||
 | 
					    """Draws mask on an image.
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    image: uint8 numpy array with shape (img_height, img_height, 3)
 | 
				
			||||||
 | 
					    mask: a uint8 numpy array of shape (img_height, img_height) with
 | 
				
			||||||
 | 
					      values between either 0 or 1.
 | 
				
			||||||
 | 
					    color: color to draw the keypoints with. Default is red.
 | 
				
			||||||
 | 
					    alpha: transparency value between 0 and 1. (default: 0.4)
 | 
				
			||||||
 | 
					  Raises:
 | 
				
			||||||
 | 
					    ValueError: On incorrect data type for image or masks.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    if image.dtype != np.uint8:
 | 
				
			||||||
 | 
					        raise ValueError('`image` not of type np.uint8')
 | 
				
			||||||
 | 
					    if mask.dtype != np.uint8:
 | 
				
			||||||
 | 
					        raise ValueError('`mask` not of type np.uint8')
 | 
				
			||||||
 | 
					    if np.any(np.logical_and(mask != 1, mask != 0)):
 | 
				
			||||||
 | 
					        raise ValueError('`mask` elements should be in [0, 1]')
 | 
				
			||||||
 | 
					    if image.shape[:2] != mask.shape:
 | 
				
			||||||
 | 
					        raise ValueError('The image has spatial dimensions %s but the mask has '
 | 
				
			||||||
 | 
					                         'dimensions %s' % (image.shape[:2], mask.shape))
 | 
				
			||||||
 | 
					    rgb = ImageColor.getrgb(color)
 | 
				
			||||||
 | 
					    pil_image = Image.fromarray(image)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    solid_color = np.expand_dims(
 | 
				
			||||||
 | 
					        np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
 | 
				
			||||||
 | 
					    pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
 | 
				
			||||||
 | 
					    pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L')
 | 
				
			||||||
 | 
					    pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
 | 
				
			||||||
 | 
					    np.copyto(image, np.array(pil_image.convert('RGB')))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def visualize_boxes_and_labels_on_image_array(
 | 
				
			||||||
 | 
					        image,
 | 
				
			||||||
 | 
					        boxes,
 | 
				
			||||||
 | 
					        classes,
 | 
				
			||||||
 | 
					        scores,
 | 
				
			||||||
 | 
					        category_index,
 | 
				
			||||||
 | 
					        instance_masks=None,
 | 
				
			||||||
 | 
					        instance_boundaries=None,
 | 
				
			||||||
 | 
					        keypoints=None,
 | 
				
			||||||
 | 
					        keypoint_scores=None,
 | 
				
			||||||
 | 
					        keypoint_edges=None,
 | 
				
			||||||
 | 
					        track_ids=None,
 | 
				
			||||||
 | 
					        use_normalized_coordinates=False,
 | 
				
			||||||
 | 
					        max_boxes_to_draw=20,
 | 
				
			||||||
 | 
					        min_score_thresh=.5,
 | 
				
			||||||
 | 
					        agnostic_mode=False,
 | 
				
			||||||
 | 
					        line_thickness=4,
 | 
				
			||||||
 | 
					        groundtruth_box_visualization_color='black',
 | 
				
			||||||
 | 
					        skip_boxes=False,
 | 
				
			||||||
 | 
					        skip_scores=False,
 | 
				
			||||||
 | 
					        skip_labels=False,
 | 
				
			||||||
 | 
					        skip_track_ids=False):
 | 
				
			||||||
 | 
					    """Overlay labeled boxes on an image with formatted scores and label names.
 | 
				
			||||||
 | 
					  This function groups boxes that correspond to the same location
 | 
				
			||||||
 | 
					  and creates a display string for each detection and overlays these
 | 
				
			||||||
 | 
					  on the image. Note that this function modifies the image in place, and returns
 | 
				
			||||||
 | 
					  that same image.
 | 
				
			||||||
 | 
					  Args:
 | 
				
			||||||
 | 
					    image: uint8 numpy array with shape (img_height, img_width, 3)
 | 
				
			||||||
 | 
					    boxes: a numpy array of shape [N, 4]
 | 
				
			||||||
 | 
					    classes: a numpy array of shape [N]. Note that class indices are 1-based,
 | 
				
			||||||
 | 
					      and match the keys in the label map.
 | 
				
			||||||
 | 
					    scores: a numpy array of shape [N] or None.  If scores=None, then
 | 
				
			||||||
 | 
					      this function assumes that the boxes to be plotted are groundtruth
 | 
				
			||||||
 | 
					      boxes and plot all boxes as black with no classes or scores.
 | 
				
			||||||
 | 
					    category_index: a dict containing category dictionaries (each holding
 | 
				
			||||||
 | 
					      category index `id` and category name `name`) keyed by category indices.
 | 
				
			||||||
 | 
					    instance_masks: a numpy array of shape [N, image_height, image_width] with
 | 
				
			||||||
 | 
					      values ranging between 0 and 1, can be None.
 | 
				
			||||||
 | 
					    instance_boundaries: a numpy array of shape [N, image_height, image_width]
 | 
				
			||||||
 | 
					      with values ranging between 0 and 1, can be None.
 | 
				
			||||||
 | 
					    keypoints: a numpy array of shape [N, num_keypoints, 2], can
 | 
				
			||||||
 | 
					      be None.
 | 
				
			||||||
 | 
					    keypoint_scores: a numpy array of shape [N, num_keypoints], can be None.
 | 
				
			||||||
 | 
					    keypoint_edges: A list of tuples with keypoint indices that specify which
 | 
				
			||||||
 | 
					      keypoints should be connected by an edge, e.g. [(0, 1), (2, 4)] draws
 | 
				
			||||||
 | 
					      edges from keypoint 0 to 1 and from keypoint 2 to 4.
 | 
				
			||||||
 | 
					    track_ids: a numpy array of shape [N] with unique track ids. If provided,
 | 
				
			||||||
 | 
					      color-coding of boxes will be determined by these ids, and not the class
 | 
				
			||||||
 | 
					      indices.
 | 
				
			||||||
 | 
					    use_normalized_coordinates: whether boxes is to be interpreted as
 | 
				
			||||||
 | 
					      normalized coordinates or not.
 | 
				
			||||||
 | 
					    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
 | 
				
			||||||
 | 
					      all boxes.
 | 
				
			||||||
 | 
					    min_score_thresh: minimum score threshold for a box or keypoint to be
 | 
				
			||||||
 | 
					      visualized.
 | 
				
			||||||
 | 
					    agnostic_mode: boolean (default: False) controlling whether to evaluate in
 | 
				
			||||||
 | 
					      class-agnostic mode or not.  This mode will display scores but ignore
 | 
				
			||||||
 | 
					      classes.
 | 
				
			||||||
 | 
					    line_thickness: integer (default: 4) controlling line width of the boxes.
 | 
				
			||||||
 | 
					    groundtruth_box_visualization_color: box color for visualizing groundtruth
 | 
				
			||||||
 | 
					      boxes
 | 
				
			||||||
 | 
					    skip_boxes: whether to skip the drawing of bounding boxes.
 | 
				
			||||||
 | 
					    skip_scores: whether to skip score when drawing a single detection
 | 
				
			||||||
 | 
					    skip_labels: whether to skip label when drawing a single detection
 | 
				
			||||||
 | 
					    skip_track_ids: whether to skip track id when drawing a single detection
 | 
				
			||||||
 | 
					  Returns:
 | 
				
			||||||
 | 
					    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
 | 
				
			||||||
 | 
					  """
 | 
				
			||||||
 | 
					    # Create a display string (and color) for every box location, group any boxes
 | 
				
			||||||
 | 
					    # that correspond to the same location.
 | 
				
			||||||
 | 
					    box_to_display_str_map = collections.defaultdict(list)
 | 
				
			||||||
 | 
					    box_to_color_map = collections.defaultdict(str)
 | 
				
			||||||
 | 
					    box_to_instance_masks_map = {}
 | 
				
			||||||
 | 
					    box_to_instance_boundaries_map = {}
 | 
				
			||||||
 | 
					    box_to_keypoints_map = collections.defaultdict(list)
 | 
				
			||||||
 | 
					    box_to_keypoint_scores_map = collections.defaultdict(list)
 | 
				
			||||||
 | 
					    box_to_track_ids_map = {}
 | 
				
			||||||
 | 
					    is_crack = False
 | 
				
			||||||
 | 
					    if not max_boxes_to_draw:
 | 
				
			||||||
 | 
					        max_boxes_to_draw = boxes.shape[0]
 | 
				
			||||||
 | 
					    for i in range(boxes.shape[0]):
 | 
				
			||||||
 | 
					        if max_boxes_to_draw == len(box_to_color_map):
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					        if scores is None or scores[i] > min_score_thresh:
 | 
				
			||||||
 | 
					            box = tuple(boxes[i].tolist())
 | 
				
			||||||
 | 
					            if instance_masks is not None:
 | 
				
			||||||
 | 
					                box_to_instance_masks_map[box] = instance_masks[i]
 | 
				
			||||||
 | 
					            if instance_boundaries is not None:
 | 
				
			||||||
 | 
					                box_to_instance_boundaries_map[box] = instance_boundaries[i]
 | 
				
			||||||
 | 
					            if keypoints is not None:
 | 
				
			||||||
 | 
					                box_to_keypoints_map[box].extend(keypoints[i])
 | 
				
			||||||
 | 
					            if keypoint_scores is not None:
 | 
				
			||||||
 | 
					                box_to_keypoint_scores_map[box].extend(keypoint_scores[i])
 | 
				
			||||||
 | 
					            if track_ids is not None:
 | 
				
			||||||
 | 
					                box_to_track_ids_map[box] = track_ids[i]
 | 
				
			||||||
 | 
					            if scores is None:
 | 
				
			||||||
 | 
					                box_to_color_map[box] = groundtruth_box_visualization_color
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                display_str = ''
 | 
				
			||||||
 | 
					                if not skip_labels:
 | 
				
			||||||
 | 
					                    if not agnostic_mode:
 | 
				
			||||||
 | 
					                        if classes[i] in six.viewkeys(category_index):
 | 
				
			||||||
 | 
					                            class_name = category_index[classes[i]]['name']
 | 
				
			||||||
 | 
					                        else:
 | 
				
			||||||
 | 
					                            class_name = 'N/A'
 | 
				
			||||||
 | 
					                        display_str = str(class_name)
 | 
				
			||||||
 | 
					                if not skip_scores:
 | 
				
			||||||
 | 
					                    if not display_str:
 | 
				
			||||||
 | 
					                        display_str = '{}%'.format(round(100 * scores[i]))
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        display_str = '{}: {}%'.format(display_str, round(100 * scores[i]))
 | 
				
			||||||
 | 
					                if not skip_track_ids and track_ids is not None:
 | 
				
			||||||
 | 
					                    if not display_str:
 | 
				
			||||||
 | 
					                        display_str = 'ID {}'.format(track_ids[i])
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        display_str = '{}: ID {}'.format(display_str, track_ids[i])
 | 
				
			||||||
 | 
					                box_to_display_str_map[box].append(display_str)
 | 
				
			||||||
 | 
					                if agnostic_mode:
 | 
				
			||||||
 | 
					                    box_to_color_map[box] = 'DarkOrange'
 | 
				
			||||||
 | 
					                elif track_ids is not None:
 | 
				
			||||||
 | 
					                    prime_multipler = _get_multiplier_for_color_randomness()
 | 
				
			||||||
 | 
					                    box_to_color_map[box] = STANDARD_COLORS[
 | 
				
			||||||
 | 
					                        (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    box_to_color_map[box] = STANDARD_COLORS[
 | 
				
			||||||
 | 
					                        classes[i] % len(STANDARD_COLORS)]
 | 
				
			||||||
 | 
					    is_crack = len(box_to_color_map) > 0
 | 
				
			||||||
 | 
					    # Draw all boxes onto image.
 | 
				
			||||||
 | 
					    for box, color in box_to_color_map.items():
 | 
				
			||||||
 | 
					        ymin, xmin, ymax, xmax = box
 | 
				
			||||||
 | 
					        if instance_masks is not None:
 | 
				
			||||||
 | 
					            draw_mask_on_image_array(
 | 
				
			||||||
 | 
					                image,
 | 
				
			||||||
 | 
					                box_to_instance_masks_map[box],
 | 
				
			||||||
 | 
					                color=color
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					        if instance_boundaries is not None:
 | 
				
			||||||
 | 
					            draw_mask_on_image_array(
 | 
				
			||||||
 | 
					                image,
 | 
				
			||||||
 | 
					                box_to_instance_boundaries_map[box],
 | 
				
			||||||
 | 
					                color='red',
 | 
				
			||||||
 | 
					                alpha=1.0
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					        draw_bounding_box_on_image_array(
 | 
				
			||||||
 | 
					            image,
 | 
				
			||||||
 | 
					            ymin,
 | 
				
			||||||
 | 
					            xmin,
 | 
				
			||||||
 | 
					            ymax,
 | 
				
			||||||
 | 
					            xmax,
 | 
				
			||||||
 | 
					            color=color,
 | 
				
			||||||
 | 
					            thickness=0 if skip_boxes else line_thickness,
 | 
				
			||||||
 | 
					            display_str_list=box_to_display_str_map[box],
 | 
				
			||||||
 | 
					            use_normalized_coordinates=use_normalized_coordinates)
 | 
				
			||||||
 | 
					        if keypoints is not None:
 | 
				
			||||||
 | 
					            keypoint_scores_for_box = None
 | 
				
			||||||
 | 
					            if box_to_keypoint_scores_map:
 | 
				
			||||||
 | 
					                keypoint_scores_for_box = box_to_keypoint_scores_map[box]
 | 
				
			||||||
 | 
					            draw_keypoints_on_image_array(
 | 
				
			||||||
 | 
					                image,
 | 
				
			||||||
 | 
					                box_to_keypoints_map[box],
 | 
				
			||||||
 | 
					                keypoint_scores_for_box,
 | 
				
			||||||
 | 
					                min_score_thresh=min_score_thresh,
 | 
				
			||||||
 | 
					                color=color,
 | 
				
			||||||
 | 
					                radius=line_thickness / 2,
 | 
				
			||||||
 | 
					                use_normalized_coordinates=use_normalized_coordinates,
 | 
				
			||||||
 | 
					                keypoint_edges=keypoint_edges,
 | 
				
			||||||
 | 
					                keypoint_edge_color=color,
 | 
				
			||||||
 | 
					                keypoint_edge_width=line_thickness // 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return image, is_crack
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,48 @@
 | 
				
			||||||
 | 
					absl-py==0.9.0
 | 
				
			||||||
 | 
					astunparse==1.6.3
 | 
				
			||||||
 | 
					cachetools==4.1.0
 | 
				
			||||||
 | 
					certifi==2020.4.5.1
 | 
				
			||||||
 | 
					chardet==3.0.4
 | 
				
			||||||
 | 
					click==7.1.2
 | 
				
			||||||
 | 
					cycler==0.10.0
 | 
				
			||||||
 | 
					Flask==1.1.2
 | 
				
			||||||
 | 
					gast==0.3.3
 | 
				
			||||||
 | 
					gevent==20.5.0
 | 
				
			||||||
 | 
					google-auth==1.15.0
 | 
				
			||||||
 | 
					google-auth-oauthlib==0.4.1
 | 
				
			||||||
 | 
					google-pasta==0.2.0
 | 
				
			||||||
 | 
					greenlet==0.4.15
 | 
				
			||||||
 | 
					grpcio==1.29.0
 | 
				
			||||||
 | 
					gunicorn==20.0.4
 | 
				
			||||||
 | 
					h5py==2.10.0
 | 
				
			||||||
 | 
					idna==2.9
 | 
				
			||||||
 | 
					importlib-metadata==1.6.0
 | 
				
			||||||
 | 
					itsdangerous==1.1.0
 | 
				
			||||||
 | 
					Jinja2==2.11.2
 | 
				
			||||||
 | 
					Keras-Preprocessing==1.1.2
 | 
				
			||||||
 | 
					Markdown==3.2.2
 | 
				
			||||||
 | 
					MarkupSafe==1.1.1
 | 
				
			||||||
 | 
					matplotlib==3.2.1
 | 
				
			||||||
 | 
					numpy==1.18.4
 | 
				
			||||||
 | 
					oauthlib==3.1.0
 | 
				
			||||||
 | 
					opt-einsum==3.2.1
 | 
				
			||||||
 | 
					Pillow==7.1.2
 | 
				
			||||||
 | 
					protobuf==3.11.3
 | 
				
			||||||
 | 
					pyasn1==0.4.8
 | 
				
			||||||
 | 
					pyasn1-modules==0.2.8
 | 
				
			||||||
 | 
					pyparsing==2.4.7
 | 
				
			||||||
 | 
					python-dateutil==2.8.1
 | 
				
			||||||
 | 
					requests==2.23.0
 | 
				
			||||||
 | 
					requests-oauthlib==1.3.0
 | 
				
			||||||
 | 
					rsa==4.0
 | 
				
			||||||
 | 
					scipy==1.4.1
 | 
				
			||||||
 | 
					six==1.15.0
 | 
				
			||||||
 | 
					tensorboard==2.2.1
 | 
				
			||||||
 | 
					tensorboard-plugin-wit==1.6.0.post3
 | 
				
			||||||
 | 
					tensorflow==2.2.0
 | 
				
			||||||
 | 
					tensorflow-estimator==2.2.0
 | 
				
			||||||
 | 
					termcolor==1.1.0
 | 
				
			||||||
 | 
					urllib3==1.25.9
 | 
				
			||||||
 | 
					Werkzeug==1.0.1
 | 
				
			||||||
 | 
					wrapt==1.12.1
 | 
				
			||||||
 | 
					zipp==3.1.0
 | 
				
			||||||
		Loading…
	
		Reference in New Issue