240 lines
9.3 KiB
Python
240 lines
9.3 KiB
Python
import base64
|
|
|
|
import flask
|
|
from flask import Flask, jsonify
|
|
import numpy as np
|
|
import io
|
|
from PIL import Image, ImageDraw
|
|
import tensorflow as tf
|
|
import ops as utils_ops
|
|
import visualization_utils as vis_util
|
|
|
|
from serve import serve_unet_model
|
|
from serve import serve_rcnn_model
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
def load_unet_model():
|
|
global tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c
|
|
tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c = serve_unet_model()
|
|
|
|
|
|
def load_rcnn_model():
|
|
global detection_graph
|
|
detection_graph = serve_rcnn_model()
|
|
|
|
|
|
load_unet_model()
|
|
load_rcnn_model()
|
|
|
|
|
|
def prepare_img(image, type):
|
|
if type == "detect":
|
|
return image.resize((width, height))
|
|
elif type == "segment":
|
|
return image.resize((width_c, height_c))
|
|
|
|
|
|
def load_image_into_numpy_array(image):
|
|
(im_width, im_height) = image.size
|
|
return np.array(image.getdata()).reshape(
|
|
(im_height, im_width, 3)).astype(np.uint8)
|
|
|
|
|
|
@app.route("/detect/rcnn", methods=["POST"])
|
|
def detect_rcnn():
|
|
if flask.request.method == "POST":
|
|
if flask.request.files.get("image"):
|
|
image = Image.open(flask.request.files["image"])
|
|
image_np = load_image_into_numpy_array(image)
|
|
# image_np_expanded = np.expand_dims(image_np, axis=0)
|
|
output_dict = run_inference_for_single_image(image_np, detection_graph)
|
|
category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}}
|
|
print(output_dict.get('detection_masks'))
|
|
i, is_crack = vis_util.visualize_boxes_and_labels_on_image_array(
|
|
image_np,
|
|
output_dict['detection_boxes'],
|
|
output_dict['detection_classes'],
|
|
output_dict['detection_scores'],
|
|
category_index,
|
|
instance_masks=output_dict.get('detection_masks'),
|
|
use_normalized_coordinates=True,
|
|
line_thickness=8,
|
|
skip_scores=True,
|
|
skip_labels=True)
|
|
img = Image.fromarray(image_np.astype("uint8"))
|
|
img = img.resize((128, 128))
|
|
raw_bytes = io.BytesIO()
|
|
img.save(raw_bytes, "JPEG")
|
|
raw_bytes.seek(0)
|
|
img_byte = raw_bytes.getvalue()
|
|
img_str = base64.b64encode(img_byte)
|
|
data = {
|
|
"result": is_crack,
|
|
"img": img_str.decode('utf-8')
|
|
}
|
|
return jsonify(data)
|
|
else:
|
|
return "Could not find image"
|
|
return "Please use POST method"
|
|
|
|
|
|
@app.route("/segment", methods=["POST"])
|
|
def segment():
|
|
if flask.request.method == "POST":
|
|
if flask.request.files.get("image"):
|
|
# read the image in PIL format
|
|
img = prepare_img(Image.open(flask.request.files["image"]), "segment")
|
|
|
|
input_data = np.expand_dims(img, axis=0)
|
|
input_data = np.float32(input_data) / 255.0
|
|
tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data)
|
|
tflite_interpreter_c.invoke()
|
|
result = tflite_interpreter_c.get_tensor(output_details_c[0]['index'])
|
|
result = result > 0.5
|
|
result = result * 255
|
|
mask = np.squeeze(result)
|
|
bg = np.asarray(img).copy()
|
|
is_crack = False
|
|
for i in range(len(mask)):
|
|
for j in range(len(mask[i])):
|
|
if mask[i][j] > 0:
|
|
bg[i][j][0] = 0
|
|
bg[i][j][1] = 0
|
|
bg[i][j][2] = 255
|
|
is_crack = True
|
|
|
|
img = Image.fromarray(bg.astype("uint8"))
|
|
raw_bytes = io.BytesIO()
|
|
img.save(raw_bytes, "JPEG")
|
|
raw_bytes.seek(0)
|
|
img_byte = raw_bytes.getvalue()
|
|
img_str = base64.b64encode(img_byte)
|
|
data = {
|
|
"result": is_crack,
|
|
"img": img_str.decode('utf-8')
|
|
}
|
|
return jsonify(data)
|
|
else:
|
|
return "Could not find image"
|
|
return "Please use POST method"
|
|
|
|
|
|
def run_inference_for_single_image(image, graph):
|
|
with graph.as_default():
|
|
with tf.compat.v1.Session() as sess:
|
|
# Get handles to input and output tensors
|
|
ops = tf.compat.v1.get_default_graph().get_operations()
|
|
all_tensor_names = {
|
|
output.name for op in ops for output in op.outputs}
|
|
tensor_dict = {}
|
|
for key in [
|
|
'num_detections', 'detection_boxes', 'detection_scores',
|
|
'detection_classes', 'detection_masks'
|
|
]:
|
|
tensor_name = key + ':0'
|
|
if tensor_name in all_tensor_names:
|
|
tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name(
|
|
tensor_name)
|
|
if 'detection_masks' in tensor_dict:
|
|
# The following processing is only for single image
|
|
detection_boxes = tf.squeeze(
|
|
tensor_dict['detection_boxes'], [0])
|
|
detection_masks = tf.squeeze(
|
|
tensor_dict['detection_masks'], [0])
|
|
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image
|
|
# size.
|
|
real_num_detection = tf.cast(
|
|
tensor_dict['num_detections'][0], tf.int32)
|
|
detection_boxes = tf.slice(detection_boxes, [0, 0], [
|
|
real_num_detection, -1])
|
|
detection_masks = tf.slice(detection_masks, [0, 0, 0], [
|
|
real_num_detection, -1, -1])
|
|
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
|
|
detection_masks, detection_boxes, image.shape[0], image.shape[1])
|
|
detection_masks_reframed = tf.cast(
|
|
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
|
|
# Follow the convention by adding back the batch dimension
|
|
tensor_dict['detection_masks'] = tf.expand_dims(
|
|
detection_masks_reframed, 0)
|
|
image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0')
|
|
|
|
# Run inference
|
|
output_dict = sess.run(tensor_dict,
|
|
feed_dict={image_tensor: np.expand_dims(image, 0)})
|
|
|
|
# all outputs are float32 numpy arrays, so convert types as appropriate
|
|
output_dict['num_detections'] = int(
|
|
output_dict['num_detections'][0])
|
|
output_dict['detection_classes'] = output_dict[
|
|
'detection_classes'][0].astype(np.uint8)
|
|
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
|
|
output_dict['detection_scores'] = output_dict['detection_scores'][0]
|
|
if 'detection_masks' in output_dict:
|
|
output_dict['detection_masks'] = output_dict['detection_masks'][0]
|
|
return output_dict
|
|
|
|
|
|
@app.route('/', methods=["POST"])
|
|
def index():
|
|
if flask.request.method == "POST":
|
|
if flask.request.files.get("image"):
|
|
img_src = Image.open(flask.request.files["image"])
|
|
# start crack detection
|
|
img_segment = prepare_img(img_src, "segment")
|
|
input_data = np.expand_dims(img_segment, axis=0)
|
|
input_data = np.float32(input_data) / 255.0
|
|
tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data)
|
|
tflite_interpreter_c.invoke()
|
|
result = tflite_interpreter_c.get_tensor(output_details_c[0]['index'])
|
|
result = result > 0.5
|
|
result = result * 255
|
|
mask = np.squeeze(result)
|
|
is_crack = False
|
|
for i in range(len(mask)):
|
|
for j in range(len(mask[i])):
|
|
if mask[i][j] > 0:
|
|
is_crack = True
|
|
break
|
|
|
|
|
|
# start pothole detection
|
|
image_np = load_image_into_numpy_array(img_src)
|
|
# image_np_expanded = np.expand_dims(image_np, axis=0)
|
|
output_dict = run_inference_for_single_image(image_np, detection_graph)
|
|
category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}}
|
|
_, is_pothole = vis_util.visualize_boxes_and_labels_on_image_array(
|
|
image_np,
|
|
output_dict['detection_boxes'],
|
|
output_dict['detection_classes'],
|
|
output_dict['detection_scores'],
|
|
category_index,
|
|
instance_masks=output_dict.get('detection_masks'),
|
|
use_normalized_coordinates=True,
|
|
line_thickness=8,
|
|
skip_scores=True,
|
|
skip_labels=True)
|
|
raw_bytes = io.BytesIO()
|
|
img_src.save(raw_bytes, "JPEG")
|
|
raw_bytes.seek(0)
|
|
img_byte = raw_bytes.getvalue()
|
|
img_str = base64.b64encode(img_byte)
|
|
data = {
|
|
"code": 0,
|
|
"crack": is_crack,
|
|
"pothole": is_pothole,
|
|
"img_src": img_str.decode('utf-8')
|
|
}
|
|
return jsonify(data)
|
|
else:
|
|
data = {
|
|
"code": 10001,
|
|
"msg": "Could not find image"
|
|
}
|
|
return jsonify(data)
|
|
return "Road Damage Detection"
|
|
|
|
if __name__ == "__main__":
|
|
app.run()
|