road_detection/app/serve.py

34 lines
1.0 KiB
Python

import tensorflow as tf
import numpy as np
import keras.models
def serve_unet_model():
TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
tflite_interpreter = tf.lite.Interpreter(model_path=TFLITE_MODEL)
input_details = tflite_interpreter.get_input_details()
output_details = tflite_interpreter.get_output_details()
tflite_interpreter.allocate_tensors()
height = input_details[0]['shape'][1]
width = input_details[0]['shape'][2]
return tflite_interpreter, height, width, input_details, output_details
def serve_rcnn_model():
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.compat.v1.gfile.GFile("../app/frozen_inference_graph.pb", 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
return detection_graph
def serve_bridge_model():
mp = "../app/crack_model.h5"
model = keras.models.load_model(mp)
return model