import base64 import flask from flask import Flask, jsonify import numpy as np import io from PIL import Image, ImageDraw import tensorflow as tf import ops as utils_ops import visualization_utils as vis_util from serve import serve_unet_model from serve import serve_rcnn_model app = Flask(__name__) def load_unet_model(): global tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c = serve_unet_model() def load_rcnn_model(): global detection_graph detection_graph = serve_rcnn_model() load_unet_model() load_rcnn_model() def prepare_img(image, type): if type == "detect": return image.resize((width, height)) elif type == "segment": return image.resize((width_c, height_c)) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) @app.route("/bridge/crack", methods=["POST"]) def segment(): if flask.request.method == "POST": if flask.request.files.get("image"): # read the image in PIL format img = prepare_img(Image.open(flask.request.files["image"]), "segment") input_data = np.expand_dims(img, axis=0) input_data = np.float32(input_data) / 255.0 tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data) tflite_interpreter_c.invoke() result = tflite_interpreter_c.get_tensor(output_details_c[0]['index']) result = result > 0.5 result = result * 255 mask = np.squeeze(result) bg = np.asarray(img).copy() is_crack = False for i in range(len(mask)): for j in range(len(mask[i])): if mask[i][j] > 0: bg[i][j][0] = 0 bg[i][j][1] = 0 bg[i][j][2] = 255 is_crack = True img = Image.fromarray(bg.astype("uint8")) raw_bytes = io.BytesIO() img.save(raw_bytes, "JPEG") raw_bytes.seek(0) img_byte = raw_bytes.getvalue() img_str = base64.b64encode(img_byte) data = { "result": is_crack, "img": img_str.decode('utf-8') } return jsonify(data) else: return "Could not find image" return "Please use POST method" def run_inference_for_single_image(image, graph): with graph.as_default(): with tf.compat.v1.Session() as sess: # Get handles to input and output tensors ops = tf.compat.v1.get_default_graph().get_operations() all_tensor_names = { output.name for op in ops for output in op.outputs} tensor_dict = {} for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name( tensor_name) if 'detection_masks' in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze( tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze( tensor_dict['detection_masks'], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image # size. real_num_detection = tf.cast( tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [ real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [ real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast( tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims( detection_masks_reframed, 0) image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)}) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int( output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.uint8) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict if __name__ == "__main__": app.run()