import base64 import flask from flask import Flask, jsonify import numpy as np import io from PIL import Image, ImageDraw import tensorflow as tf import ops as utils_ops import visualization_utils as vis_util import cv2 from serve import serve_unet_model, serve_bridge_model from serve import serve_rcnn_model app = Flask(__name__) def load_unet_model(): global tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c tflite_interpreter_c, height_c, width_c, input_details_c, output_details_c = serve_unet_model() def load_rcnn_model(): global detection_graph detection_graph = serve_rcnn_model() load_unet_model() load_rcnn_model() def prepare_img(image, type): if type == "detect": return image.resize((width, height)) elif type == "segment": return image.resize((width_c, height_c)) def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) @app.route("/detect/rcnn", methods=["POST"]) def detect_rcnn(): if flask.request.method == "POST": if flask.request.files.get("image"): image = Image.open(flask.request.files["image"]) image_np = load_image_into_numpy_array(image) # image_np_expanded = np.expand_dims(image_np, axis=0) output_dict = run_inference_for_single_image(image_np, detection_graph) category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}} print(output_dict.get('detection_masks')) i, is_crack = vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=8, skip_scores=True, skip_labels=True) img = Image.fromarray(image_np.astype("uint8")) img = img.resize((128, 128)) raw_bytes = io.BytesIO() img.save(raw_bytes, "JPEG") raw_bytes.seek(0) img_byte = raw_bytes.getvalue() img_str = base64.b64encode(img_byte) data = { "result": is_crack, "img": img_str.decode('utf-8') } return jsonify(data) else: return "Could not find image" return "Please use POST method" @app.route("/segment", methods=["POST"]) def segment(): if flask.request.method == "POST": if flask.request.files.get("image"): # read the image in PIL format img = prepare_img(Image.open(flask.request.files["image"]), "segment") input_data = np.expand_dims(img, axis=0) input_data = np.float32(input_data) / 255.0 tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data) tflite_interpreter_c.invoke() result = tflite_interpreter_c.get_tensor(output_details_c[0]['index']) result = result > 0.5 result = result * 255 mask = np.squeeze(result) bg = np.asarray(img).copy() is_crack = False for i in range(len(mask)): for j in range(len(mask[i])): if mask[i][j] > 0: bg[i][j][0] = 0 bg[i][j][1] = 0 bg[i][j][2] = 255 is_crack = True img = Image.fromarray(bg.astype("uint8")) raw_bytes = io.BytesIO() img.save(raw_bytes, "JPEG") raw_bytes.seek(0) img_byte = raw_bytes.getvalue() img_str = base64.b64encode(img_byte) data = { "result": is_crack, "img": img_str.decode('utf-8') } return jsonify(data) else: return "Could not find image" return "Please use POST method" def run_inference_for_single_image(image, graph): with graph.as_default(): with tf.compat.v1.Session() as sess: # Get handles to input and output tensors ops = tf.compat.v1.get_default_graph().get_operations() all_tensor_names = { output.name for op in ops for output in op.outputs} tensor_dict = {} for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.compat.v1.get_default_graph().get_tensor_by_name( tensor_name) if 'detection_masks' in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze( tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze( tensor_dict['detection_masks'], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image # size. real_num_detection = tf.cast( tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [ real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [ real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[0], image.shape[1]) detection_masks_reframed = tf.cast( tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims( detection_masks_reframed, 0) image_tensor = tf.compat.v1.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference output_dict = sess.run(tensor_dict, feed_dict={image_tensor: np.expand_dims(image, 0)}) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int( output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.uint8) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict @app.route('/', methods=["POST"]) def index(): if flask.request.method == "POST": if flask.request.files.get("image"): img_src = Image.open(flask.request.files["image"]) # start crack detection img_segment = prepare_img(img_src, "segment") input_data = np.expand_dims(img_segment, axis=0) input_data = np.float32(input_data) / 255.0 tflite_interpreter_c.set_tensor(input_details_c[0]['index'], input_data) tflite_interpreter_c.invoke() result = tflite_interpreter_c.get_tensor(output_details_c[0]['index']) result = result > 0.5 result = result * 255 mask = np.squeeze(result) bg = np.asarray(img_segment).copy() is_crack = False for i in range(len(mask)): for j in range(len(mask[i])): if mask[i][j] > 0: bg[i][j][0] = 0 bg[i][j][1] = 0 bg[i][j][2] = 255 is_crack = True img = Image.fromarray(bg.astype("uint8")) # start pothole detection image_np = load_image_into_numpy_array(img_src) # image_np_expanded = np.expand_dims(image_np, axis=0) output_dict = run_inference_for_single_image(image_np, detection_graph) category_index = {0: {"name": "pothole"}, 1: {"name": "pothole"}} _, is_pothole = vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=8, skip_scores=True, skip_labels=True) raw_bytes = io.BytesIO() raw_src = io.BytesIO() img.save(raw_bytes, "JPEG") img_src.save(raw_src, "JPEG") raw_bytes.seek(0) raw_src.seek(0) img_byte = raw_bytes.getvalue() img_src_byte = raw_src.getvalue() img_str = base64.b64encode(img_src_byte) img_discern = base64.b64encode(img_byte) data = { "code": 0, "crack": is_crack, "pothole": is_pothole, "img_src": img_str.decode('utf-8'), "img_discern": img_discern.decode('utf-8') } return jsonify(data) else: data = { "code": 10001, "msg": "Could not find image" } return jsonify(data) return "Road Damage Detection" @app.route("/predict/bridge", methods=["POST"]) def bridge(): if flask.request.method == "POST": if flask.request.files.get("image"): pred_data_colr = [] pred_data_inv = [] img_src = cv2.imread(flask.request.files["image"], 0) image_dst = resize_keep_aspect_ratio(img_src, (227, 227)) bi_inv, colored_img = process_image(image_dst) pred_data_colr.append(colored_img) pred_data_inv.append(bi_inv) final_pred_colr = np.array(pred_data_colr).reshape((len(pred_data_colr), 227, 227, 1)) final_pred_inv = np.array(pred_data_inv).reshape((len(pred_data_inv), 227, 227, 1)) is_crack = predict_image_util(final_pred_inv) image_np = load_image_into_numpy_array(img_src) img = Image.fromarray(image_np.astype("uint8")) img = img.resize((128, 128)) raw_bytes = io.BytesIO() img.save(raw_bytes, "JPEG") raw_bytes.seek(0) img_byte = raw_bytes.getvalue() img_str = base64.b64encode(img_byte) data = { "result": is_crack, "img": img_str.decode('utf-8') } return jsonify(data) else: data = { "code": 10001, "msg": "Could not find image" } return jsonify(data) return "Bridge Detection" def predict_image_util(final_pred_inv): model = serve_bridge_model() img_test = (final_pred_inv[0].reshape((1, 227, 227, 1))) raw_predicted_label = model.predict(img_test, batch_size=None, verbose=0, steps=None)[0][0] predicted_label = 1 if raw_predicted_label < 0.8: predicted_label = 0 predicted_label_str = 'Crack' if predicted_label == 0: predicted_label_str = 'No Crack' print('Raw Predicted Label(Numeric): ' + str(raw_predicted_label)) print('Predicted Label : ' + predicted_label_str) return predicted_label def process_image(img): ret, bi_inv = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV) return bi_inv, img def resize_keep_aspect_ratio(image_src, dst_size): src_h, src_w = image_src.shape[:2] dst_h, dst_w = dst_size # 判断应该按哪个边做等比缩放 h = dst_w * (float(src_h) / src_w) # 按照w做等比缩放 w = dst_h * (float(src_w) / src_h) # 按照h做等比缩放 h = int(h) w = int(w) if h <= dst_h: image_dst = cv2.resize(image_src, (dst_w, int(h))) else: image_dst = cv2.resize(image_src, (int(w), dst_h)) h_, w_ = image_dst.shape[:2] top = int((dst_h - h_) / 2) down = int((dst_h - h_ + 1) / 2) left = int((dst_w - w_) / 2) right = int((dst_w - w_ + 1) / 2) value = [0, 0, 0] border_type = cv2.BORDER_CONSTANT image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, border_type, None, value) return image_dst if __name__ == "__main__": app.run()