import tensorflow as tf import numpy as np import keras.models def serve_unet_model(): TFLITE_MODEL = "../app/UNet_25_Crack.tflite" tflite_interpreter = tf.lite.Interpreter(model_path=TFLITE_MODEL) input_details = tflite_interpreter.get_input_details() output_details = tflite_interpreter.get_output_details() tflite_interpreter.allocate_tensors() height = input_details[0]['shape'][1] width = input_details[0]['shape'][2] return tflite_interpreter, height, width, input_details, output_details def serve_rcnn_model(): detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.compat.v1.GraphDef() with tf.compat.v1.gfile.GFile("../app/frozen_inference_graph.pb", 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return detection_graph def serve_bridge_model(): mp = "../app/crack_model.h5" model = keras.models.load_model(mp) return model