Compare commits
	
		
			4 Commits
		
	
	
		
			master
			...
			x86_bridge
		
	
	| Author | SHA1 | Date | 
|---|---|---|
| 
							
							
								 | 
						3e5023dcff | |
| 
							
							
								 | 
						8ffdf7fb50 | |
| 
							
							
								 | 
						cff79151d9 | |
| 
							
							
								 | 
						1d5450054f | 
| 
						 | 
				
			
			@ -1,10 +1,12 @@
 | 
			
		|||
FROM python:3.7.16
 | 
			
		||||
FROM  tensorflow/tensorflow:2.5.1
 | 
			
		||||
 | 
			
		||||
RUN pip install gunicorn==20.1.0
 | 
			
		||||
RUN pip install setuptools==46.1.3
 | 
			
		||||
RUN apt-get install make g++ gcc
 | 
			
		||||
RUN pip3 install gunicorn
 | 
			
		||||
RUN pip3 install setuptools==46.1.3
 | 
			
		||||
 | 
			
		||||
RUN mkdir -p /app
 | 
			
		||||
WORKDIR /app
 | 
			
		||||
 | 
			
		||||
COPY requirements.txt /app
 | 
			
		||||
RUN pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,16 +0,0 @@
 | 
			
		|||
FROM nvcr.io/nvidia/l4t-tensorflow:r32.6.1-tf2.5-py3
 | 
			
		||||
RUN apt-get install make g++ gcc
 | 
			
		||||
RUN pip3 install gunicorn
 | 
			
		||||
RUN pip3 install setuptools==46.1.3
 | 
			
		||||
 | 
			
		||||
RUN mkdir -p /app
 | 
			
		||||
WORKDIR /app
 | 
			
		||||
 | 
			
		||||
COPY requirements.txt /app
 | 
			
		||||
RUN pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
 | 
			
		||||
 | 
			
		||||
COPY ./app /app
 | 
			
		||||
EXPOSE 5000
 | 
			
		||||
CMD ["gunicorn", "--bind", ":5000", "server:app"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -1,6 +1,6 @@
 | 
			
		|||
import tensorflow as tf
 | 
			
		||||
import numpy as np
 | 
			
		||||
 | 
			
		||||
import keras.models
 | 
			
		||||
 | 
			
		||||
def serve_unet_model():
 | 
			
		||||
    TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
 | 
			
		||||
| 
						 | 
				
			
			@ -25,3 +25,9 @@ def serve_rcnn_model():
 | 
			
		|||
            od_graph_def.ParseFromString(serialized_graph)
 | 
			
		||||
            tf.import_graph_def(od_graph_def, name='')
 | 
			
		||||
    return detection_graph
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def serve_bridge_model():
 | 
			
		||||
    mp = "../app/crack_model.h5"
 | 
			
		||||
    model = keras.models.load_model(mp)
 | 
			
		||||
    return model
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -8,8 +8,9 @@ from PIL import Image, ImageDraw
 | 
			
		|||
import tensorflow as tf
 | 
			
		||||
import ops as utils_ops
 | 
			
		||||
import visualization_utils as vis_util
 | 
			
		||||
import cv2
 | 
			
		||||
 | 
			
		||||
from serve import serve_unet_model
 | 
			
		||||
from serve import serve_unet_model, serve_bridge_model
 | 
			
		||||
from serve import serve_rcnn_model
 | 
			
		||||
 | 
			
		||||
app = Flask(__name__)
 | 
			
		||||
| 
						 | 
				
			
			@ -246,5 +247,95 @@ def index():
 | 
			
		|||
            return jsonify(data)
 | 
			
		||||
    return "Road Damage Detection"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.route("/predict/bridge", methods=["POST"])
 | 
			
		||||
def bridge():
 | 
			
		||||
    if flask.request.method == "POST":
 | 
			
		||||
        if flask.request.files.get("image"):
 | 
			
		||||
            pred_data_colr = []
 | 
			
		||||
            pred_data_inv = []
 | 
			
		||||
            img_src = cv2.imread(flask.request.files["image"], 0)
 | 
			
		||||
            image_dst = resize_keep_aspect_ratio(img_src, (227, 227))
 | 
			
		||||
            bi_inv, colored_img = process_image(image_dst)
 | 
			
		||||
            pred_data_colr.append(colored_img)
 | 
			
		||||
            pred_data_inv.append(bi_inv)
 | 
			
		||||
            final_pred_colr = np.array(pred_data_colr).reshape((len(pred_data_colr), 227, 227, 1))
 | 
			
		||||
            final_pred_inv = np.array(pred_data_inv).reshape((len(pred_data_inv), 227, 227, 1))
 | 
			
		||||
            is_crack = predict_image_util(final_pred_inv)
 | 
			
		||||
            image_np = load_image_into_numpy_array(img_src)
 | 
			
		||||
            img = Image.fromarray(image_np.astype("uint8"))
 | 
			
		||||
            img = img.resize((128, 128))
 | 
			
		||||
            raw_bytes = io.BytesIO()
 | 
			
		||||
            img.save(raw_bytes, "JPEG")
 | 
			
		||||
            raw_bytes.seek(0)
 | 
			
		||||
            img_byte = raw_bytes.getvalue()
 | 
			
		||||
            img_str = base64.b64encode(img_byte)
 | 
			
		||||
            data = {
 | 
			
		||||
                "result": is_crack,
 | 
			
		||||
                "img": img_str.decode('utf-8')
 | 
			
		||||
            }
 | 
			
		||||
            return jsonify(data)
 | 
			
		||||
        else:
 | 
			
		||||
            data = {
 | 
			
		||||
                "code": 10001,
 | 
			
		||||
                "msg": "Could not find image"
 | 
			
		||||
            }
 | 
			
		||||
            return jsonify(data)
 | 
			
		||||
    return "Bridge Detection"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def predict_image_util(final_pred_inv):
 | 
			
		||||
    model = serve_bridge_model()
 | 
			
		||||
    img_test = (final_pred_inv[0].reshape((1, 227, 227, 1)))
 | 
			
		||||
    raw_predicted_label = model.predict(img_test, batch_size=None, verbose=0, steps=None)[0][0]
 | 
			
		||||
 | 
			
		||||
    predicted_label = 1
 | 
			
		||||
    if raw_predicted_label < 0.8:
 | 
			
		||||
        predicted_label = 0
 | 
			
		||||
 | 
			
		||||
    predicted_label_str = 'Crack'
 | 
			
		||||
    if predicted_label == 0:
 | 
			
		||||
        predicted_label_str = 'No Crack'
 | 
			
		||||
 | 
			
		||||
    print('Raw Predicted Label(Numeric): ' + str(raw_predicted_label))
 | 
			
		||||
    print('Predicted Label : ' + predicted_label_str)
 | 
			
		||||
    return predicted_label
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def process_image(img):
 | 
			
		||||
    ret, bi_inv = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
 | 
			
		||||
    return bi_inv, img
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def resize_keep_aspect_ratio(image_src, dst_size):
 | 
			
		||||
    src_h, src_w = image_src.shape[:2]
 | 
			
		||||
    dst_h, dst_w = dst_size
 | 
			
		||||
 | 
			
		||||
    # 判断应该按哪个边做等比缩放
 | 
			
		||||
    h = dst_w * (float(src_h) / src_w)  # 按照w做等比缩放
 | 
			
		||||
    w = dst_h * (float(src_w) / src_h)  # 按照h做等比缩放
 | 
			
		||||
 | 
			
		||||
    h = int(h)
 | 
			
		||||
    w = int(w)
 | 
			
		||||
 | 
			
		||||
    if h <= dst_h:
 | 
			
		||||
        image_dst = cv2.resize(image_src, (dst_w, int(h)))
 | 
			
		||||
    else:
 | 
			
		||||
        image_dst = cv2.resize(image_src, (int(w), dst_h))
 | 
			
		||||
 | 
			
		||||
    h_, w_ = image_dst.shape[:2]
 | 
			
		||||
 | 
			
		||||
    top = int((dst_h - h_) / 2)
 | 
			
		||||
    down = int((dst_h - h_ + 1) / 2)
 | 
			
		||||
    left = int((dst_w - w_) / 2)
 | 
			
		||||
    right = int((dst_w - w_ + 1) / 2)
 | 
			
		||||
 | 
			
		||||
    value = [0, 0, 0]
 | 
			
		||||
    border_type = cv2.BORDER_CONSTANT
 | 
			
		||||
    image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, border_type, None, value)
 | 
			
		||||
 | 
			
		||||
    return image_dst
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    app.run()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										2
									
								
								build.sh
								
								
								
								
							
							
						
						
									
										2
									
								
								build.sh
								
								
								
								
							| 
						 | 
				
			
			@ -1,3 +1,3 @@
 | 
			
		|||
# /usr/bash
 | 
			
		||||
 | 
			
		||||
docker build --tag hpds-road-detection:1.0.0 .
 | 
			
		||||
docker build --tag hpds-bridge-detection:1.0.0 .
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,13 +1,13 @@
 | 
			
		|||
version: "3.6"
 | 
			
		||||
services:
 | 
			
		||||
  hpds-python-model:
 | 
			
		||||
    container_name: hpds-road-detection-model
 | 
			
		||||
    image: hpds-road-detection:1.0.0 
 | 
			
		||||
  hpds-bridge-detection-model:
 | 
			
		||||
    container_name: hpds-bridge-detection-model
 | 
			
		||||
    image: hpds-bridge-detection:1.0.0
 | 
			
		||||
    networks:
 | 
			
		||||
      - hpds-network
 | 
			
		||||
    restart: always
 | 
			
		||||
    ports:
 | 
			
		||||
      - "8000:5000"
 | 
			
		||||
      - "8002:5000"
 | 
			
		||||
    volumes:
 | 
			
		||||
      - /usr/local/cuda/lib64:/usr/local/cuda/lib64
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,4 @@
 | 
			
		|||
#/bin/bash
 | 
			
		||||
 | 
			
		||||
pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -3,3 +3,5 @@ numpy==1.19.5
 | 
			
		|||
Pillow==7.1.2
 | 
			
		||||
six==1.15.0
 | 
			
		||||
tensorflow==2.5.1
 | 
			
		||||
opencv-contrib-python==4.5.3.56
 | 
			
		||||
opencv-python==4.5.3.56
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue