Compare commits
4 Commits
master
...
x86_bridge
Author | SHA1 | Date |
---|---|---|
chenxingming | 3e5023dcff | |
chenxingming | 8ffdf7fb50 | |
chenxingming | cff79151d9 | |
chenxingming | 1d5450054f |
11
Dockerfile
11
Dockerfile
|
@ -1,16 +1,15 @@
|
|||
FROM nvcr.io/nvidia/l4t-tensorflow:r32.6.1-tf2.5-py3
|
||||
FROM tensorflow/tensorflow:2.5.1
|
||||
|
||||
RUN apt-get install make g++ gcc
|
||||
RUN pip3 install gunicorn
|
||||
RUN pip3 install gunicorn
|
||||
RUN pip3 install setuptools==46.1.3
|
||||
#RUN pip3 install flask numpy Pillow six matplotlib
|
||||
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
|
||||
COPY requirements.txt /app
|
||||
RUN pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||
RUN pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||
|
||||
COPY ./app /app
|
||||
EXPOSE 5000
|
||||
CMD ["gunicorn", "--bind", ":5000", "server:app"]
|
||||
|
||||
|
||||
|
|
|
@ -1,18 +0,0 @@
|
|||
FROM python:3.7.16
|
||||
ENV PYTHONUNBUFFERED 1
|
||||
# RUN sed -i s@/deb.debian.org/@/mirrors.aliyun.com/@g /etc/apt/sources.list
|
||||
# RUN cat /etc/apt/sources.list
|
||||
# RUN apt-get update \
|
||||
# && apt-get install -y make \
|
||||
# && apt-get clean \
|
||||
# && rm -rf /var/lib/apt/lists/*
|
||||
RUN mkdir -p /app
|
||||
WORKDIR /app
|
||||
COPY requirements.txt /app
|
||||
RUN python -m venv .
|
||||
# RUN pip install pip==23.0.1
|
||||
RUN pip install setuptools==46.1.3
|
||||
RUN pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
|
||||
COPY ./app /app
|
||||
EXPOSE 5000
|
||||
CMD ["gunicorn", "--bind", ":5000", "server:app"]
|
Binary file not shown.
Binary file not shown.
|
@ -1,6 +1,6 @@
|
|||
import tensorflow as tf
|
||||
import numpy as np
|
||||
|
||||
import keras.models
|
||||
|
||||
def serve_unet_model():
|
||||
TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
|
||||
|
@ -25,3 +25,9 @@ def serve_rcnn_model():
|
|||
od_graph_def.ParseFromString(serialized_graph)
|
||||
tf.import_graph_def(od_graph_def, name='')
|
||||
return detection_graph
|
||||
|
||||
|
||||
def serve_bridge_model():
|
||||
mp = "../app/crack_model.h5"
|
||||
model = keras.models.load_model(mp)
|
||||
return model
|
||||
|
|
|
@ -8,8 +8,9 @@ from PIL import Image, ImageDraw
|
|||
import tensorflow as tf
|
||||
import ops as utils_ops
|
||||
import visualization_utils as vis_util
|
||||
import cv2
|
||||
|
||||
from serve import serve_unet_model
|
||||
from serve import serve_unet_model, serve_bridge_model
|
||||
from serve import serve_rcnn_model
|
||||
|
||||
app = Flask(__name__)
|
||||
|
@ -222,7 +223,7 @@ def index():
|
|||
raw_bytes = io.BytesIO()
|
||||
raw_src = io.BytesIO()
|
||||
img.save(raw_bytes, "JPEG")
|
||||
img_src.save(raw_src,"JPEG")
|
||||
img_src.save(raw_src, "JPEG")
|
||||
raw_bytes.seek(0)
|
||||
raw_src.seek(0)
|
||||
img_byte = raw_bytes.getvalue()
|
||||
|
@ -246,5 +247,95 @@ def index():
|
|||
return jsonify(data)
|
||||
return "Road Damage Detection"
|
||||
|
||||
|
||||
@app.route("/predict/bridge", methods=["POST"])
|
||||
def bridge():
|
||||
if flask.request.method == "POST":
|
||||
if flask.request.files.get("image"):
|
||||
pred_data_colr = []
|
||||
pred_data_inv = []
|
||||
img_src = cv2.imread(flask.request.files["image"], 0)
|
||||
image_dst = resize_keep_aspect_ratio(img_src, (227, 227))
|
||||
bi_inv, colored_img = process_image(image_dst)
|
||||
pred_data_colr.append(colored_img)
|
||||
pred_data_inv.append(bi_inv)
|
||||
final_pred_colr = np.array(pred_data_colr).reshape((len(pred_data_colr), 227, 227, 1))
|
||||
final_pred_inv = np.array(pred_data_inv).reshape((len(pred_data_inv), 227, 227, 1))
|
||||
is_crack = predict_image_util(final_pred_inv)
|
||||
image_np = load_image_into_numpy_array(img_src)
|
||||
img = Image.fromarray(image_np.astype("uint8"))
|
||||
img = img.resize((128, 128))
|
||||
raw_bytes = io.BytesIO()
|
||||
img.save(raw_bytes, "JPEG")
|
||||
raw_bytes.seek(0)
|
||||
img_byte = raw_bytes.getvalue()
|
||||
img_str = base64.b64encode(img_byte)
|
||||
data = {
|
||||
"result": is_crack,
|
||||
"img": img_str.decode('utf-8')
|
||||
}
|
||||
return jsonify(data)
|
||||
else:
|
||||
data = {
|
||||
"code": 10001,
|
||||
"msg": "Could not find image"
|
||||
}
|
||||
return jsonify(data)
|
||||
return "Bridge Detection"
|
||||
|
||||
|
||||
def predict_image_util(final_pred_inv):
|
||||
model = serve_bridge_model()
|
||||
img_test = (final_pred_inv[0].reshape((1, 227, 227, 1)))
|
||||
raw_predicted_label = model.predict(img_test, batch_size=None, verbose=0, steps=None)[0][0]
|
||||
|
||||
predicted_label = 1
|
||||
if raw_predicted_label < 0.8:
|
||||
predicted_label = 0
|
||||
|
||||
predicted_label_str = 'Crack'
|
||||
if predicted_label == 0:
|
||||
predicted_label_str = 'No Crack'
|
||||
|
||||
print('Raw Predicted Label(Numeric): ' + str(raw_predicted_label))
|
||||
print('Predicted Label : ' + predicted_label_str)
|
||||
return predicted_label
|
||||
|
||||
|
||||
def process_image(img):
|
||||
ret, bi_inv = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
|
||||
return bi_inv, img
|
||||
|
||||
|
||||
def resize_keep_aspect_ratio(image_src, dst_size):
|
||||
src_h, src_w = image_src.shape[:2]
|
||||
dst_h, dst_w = dst_size
|
||||
|
||||
# 判断应该按哪个边做等比缩放
|
||||
h = dst_w * (float(src_h) / src_w) # 按照w做等比缩放
|
||||
w = dst_h * (float(src_w) / src_h) # 按照h做等比缩放
|
||||
|
||||
h = int(h)
|
||||
w = int(w)
|
||||
|
||||
if h <= dst_h:
|
||||
image_dst = cv2.resize(image_src, (dst_w, int(h)))
|
||||
else:
|
||||
image_dst = cv2.resize(image_src, (int(w), dst_h))
|
||||
|
||||
h_, w_ = image_dst.shape[:2]
|
||||
|
||||
top = int((dst_h - h_) / 2)
|
||||
down = int((dst_h - h_ + 1) / 2)
|
||||
left = int((dst_w - w_) / 2)
|
||||
right = int((dst_w - w_ + 1) / 2)
|
||||
|
||||
value = [0, 0, 0]
|
||||
border_type = cv2.BORDER_CONSTANT
|
||||
image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, border_type, None, value)
|
||||
|
||||
return image_dst
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app.run()
|
||||
|
|
2
build.sh
2
build.sh
|
@ -1,3 +1,3 @@
|
|||
# /usr/bash
|
||||
|
||||
docker build --tag hpds-road-detection:1.0.0 .
|
||||
docker build --tag hpds-bridge-detection:1.0.0 .
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
version: "3.6"
|
||||
services:
|
||||
hpds-python-model:
|
||||
container_name: hpds-road-detection-model
|
||||
image: hpds-road-detection:1.0.0
|
||||
hpds-bridge-detection-model:
|
||||
container_name: hpds-bridge-detection-model
|
||||
image: hpds-bridge-detection:1.0.0
|
||||
networks:
|
||||
- hpds-network
|
||||
restart: always
|
||||
ports:
|
||||
- 8000:5000
|
||||
- "8002:5000"
|
||||
volumes:
|
||||
- /usr/local/cuda/lib64:/usr/local/cuda/lib64
|
||||
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
#/bin/bash
|
||||
|
||||
pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/
|
||||
|
|
@ -1,5 +1,7 @@
|
|||
Flask==1.1.2
|
||||
numpy==1.18.4
|
||||
numpy==1.19.5
|
||||
Pillow==7.1.2
|
||||
six==1.15.0
|
||||
|
||||
tensorflow==2.5.1
|
||||
opencv-contrib-python==4.5.3.56
|
||||
opencv-python==4.5.3.56
|
||||
|
|
Loading…
Reference in New Issue