修改检测输出返回值

This commit is contained in:
wangjian 2023-04-18 10:31:55 +08:00
parent 6a16d3fafb
commit 96462c532c
5 changed files with 30 additions and 50 deletions

View File

@ -10,9 +10,9 @@ RUN mkdir -p /app
WORKDIR /app
COPY requirements.txt /app
RUN python -m venv .
RUN pip install pip==20.1.1
RUN pip install pip==23.0.1
RUN pip install setuptools==46.1.3
RUN pip install --no-cache-dir -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
RUN pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
COPY ./app /app
EXPOSE 5000
CMD ["gunicorn", "--bind", ":5000", "server:app"]

View File

@ -44,3 +44,14 @@
| 原始图片 | img_src | string | 图像的base64编码字符串 |
| 是否有裂缝 | crack | bool | 是否有裂缝 |
| 是否有坑洼 | pothole | bool | 是否有坑洼 |
## 编译说明
### x86编译docker
```docker build -t hpds-road-detection:v1.0 .```
### arm64编译docker
```docker buildx build -t hpds-road-detection-edge:v1.0 . --platform=linux/arm64```

View File

@ -3,7 +3,7 @@ import numpy as np
def serve_unet_model():
TFLITE_MODEL = "/app/UNet_25_Crack.tflite"
TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
tflite_interpreter = tf.lite.Interpreter(model_path=TFLITE_MODEL)
@ -20,7 +20,7 @@ def serve_rcnn_model():
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.compat.v1.GraphDef()
with tf.compat.v1.gfile.GFile("/app/frozen_inference_graph.pb", 'rb') as fid:
with tf.compat.v1.gfile.GFile("../app/frozen_inference_graph.pb", 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')

View File

@ -191,13 +191,17 @@ def index():
result = result > 0.5
result = result * 255
mask = np.squeeze(result)
bg = np.asarray(img_segment).copy()
is_crack = False
for i in range(len(mask)):
for j in range(len(mask[i])):
if mask[i][j] > 0:
bg[i][j][0] = 0
bg[i][j][1] = 0
bg[i][j][2] = 255
is_crack = True
break
img = Image.fromarray(bg.astype("uint8"))
# start pothole detection
image_np = load_image_into_numpy_array(img_src)
@ -216,15 +220,22 @@ def index():
skip_scores=True,
skip_labels=True)
raw_bytes = io.BytesIO()
img_src.save(raw_bytes, "JPEG")
raw_src = io.BytesIO()
img.save(raw_bytes, "JPEG")
img_src.save(raw_src,"JPEG")
raw_bytes.seek(0)
raw_src.seek(0)
img_byte = raw_bytes.getvalue()
img_str = base64.b64encode(img_byte)
img_src_byte = raw_src.getvalue()
img_str = base64.b64encode(img_src_byte)
img_discern = base64.b64encode(img_byte)
data = {
"code": 0,
"crack": is_crack,
"pothole": is_pothole,
"img_src": img_str.decode('utf-8')
"img_src": img_str.decode('utf-8'),
"img_discern": img_discern.decode('utf-8')
}
return jsonify(data)
else:

View File

@ -1,48 +1,6 @@
absl-py==0.9.0
astunparse==1.6.3
cachetools==4.1.0
certifi==2020.4.5.1
chardet==3.0.4
click==7.1.2
cycler==0.10.0
Flask==1.1.2
gast==0.3.3
gevent==20.5.0
google-auth==1.15.0
google-auth-oauthlib==0.4.1
google-pasta==0.2.0
greenlet==0.4.15
grpcio==1.29.0
gunicorn==20.0.4
h5py==2.10.0
idna==2.9
importlib-metadata==1.6.0
itsdangerous==1.1.0
Jinja2==2.11.2
Keras-Preprocessing==1.1.2
Markdown==3.2.2
MarkupSafe==1.1.1
matplotlib==3.2.1
numpy==1.18.4
oauthlib==3.1.0
opt-einsum==3.2.1
Pillow==7.1.2
protobuf==3.11.3
pyasn1==0.4.8
pyasn1-modules==0.2.8
pyparsing==2.4.7
python-dateutil==2.8.1
requests==2.23.0
requests-oauthlib==1.3.0
rsa==4.0
scipy==1.4.1
six==1.15.0
tensorboard==2.2.1
tensorboard-plugin-wit==1.6.0.post3
tensorflow==2.2.0
tensorflow-estimator==2.2.0
termcolor==1.1.0
urllib3==1.25.9
Werkzeug==1.0.1
wrapt==1.12.1
zipp==3.1.0