modify bridge

This commit is contained in:
chenxingming 2023-05-14 18:19:40 +08:00
parent 8ffdf7fb50
commit 3e5023dcff
6 changed files with 108 additions and 4 deletions

Binary file not shown.

BIN
app/crack_model.h5 Executable file

Binary file not shown.

View File

@ -1,6 +1,6 @@
import tensorflow as tf import tensorflow as tf
import numpy as np import numpy as np
import keras.models
def serve_unet_model(): def serve_unet_model():
TFLITE_MODEL = "../app/UNet_25_Crack.tflite" TFLITE_MODEL = "../app/UNet_25_Crack.tflite"
@ -25,3 +25,9 @@ def serve_rcnn_model():
od_graph_def.ParseFromString(serialized_graph) od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='') tf.import_graph_def(od_graph_def, name='')
return detection_graph return detection_graph
def serve_bridge_model():
mp = "../app/crack_model.h5"
model = keras.models.load_model(mp)
return model

View File

@ -8,8 +8,9 @@ from PIL import Image, ImageDraw
import tensorflow as tf import tensorflow as tf
import ops as utils_ops import ops as utils_ops
import visualization_utils as vis_util import visualization_utils as vis_util
import cv2
from serve import serve_unet_model from serve import serve_unet_model, serve_bridge_model
from serve import serve_rcnn_model from serve import serve_rcnn_model
app = Flask(__name__) app = Flask(__name__)
@ -246,5 +247,95 @@ def index():
return jsonify(data) return jsonify(data)
return "Road Damage Detection" return "Road Damage Detection"
@app.route("/predict/bridge", methods=["POST"])
def bridge():
if flask.request.method == "POST":
if flask.request.files.get("image"):
pred_data_colr = []
pred_data_inv = []
img_src = cv2.imread(flask.request.files["image"], 0)
image_dst = resize_keep_aspect_ratio(img_src, (227, 227))
bi_inv, colored_img = process_image(image_dst)
pred_data_colr.append(colored_img)
pred_data_inv.append(bi_inv)
final_pred_colr = np.array(pred_data_colr).reshape((len(pred_data_colr), 227, 227, 1))
final_pred_inv = np.array(pred_data_inv).reshape((len(pred_data_inv), 227, 227, 1))
is_crack = predict_image_util(final_pred_inv)
image_np = load_image_into_numpy_array(img_src)
img = Image.fromarray(image_np.astype("uint8"))
img = img.resize((128, 128))
raw_bytes = io.BytesIO()
img.save(raw_bytes, "JPEG")
raw_bytes.seek(0)
img_byte = raw_bytes.getvalue()
img_str = base64.b64encode(img_byte)
data = {
"result": is_crack,
"img": img_str.decode('utf-8')
}
return jsonify(data)
else:
data = {
"code": 10001,
"msg": "Could not find image"
}
return jsonify(data)
return "Bridge Detection"
def predict_image_util(final_pred_inv):
model = serve_bridge_model()
img_test = (final_pred_inv[0].reshape((1, 227, 227, 1)))
raw_predicted_label = model.predict(img_test, batch_size=None, verbose=0, steps=None)[0][0]
predicted_label = 1
if raw_predicted_label < 0.8:
predicted_label = 0
predicted_label_str = 'Crack'
if predicted_label == 0:
predicted_label_str = 'No Crack'
print('Raw Predicted Label(Numeric): ' + str(raw_predicted_label))
print('Predicted Label : ' + predicted_label_str)
return predicted_label
def process_image(img):
ret, bi_inv = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
return bi_inv, img
def resize_keep_aspect_ratio(image_src, dst_size):
src_h, src_w = image_src.shape[:2]
dst_h, dst_w = dst_size
# 判断应该按哪个边做等比缩放
h = dst_w * (float(src_h) / src_w) # 按照w做等比缩放
w = dst_h * (float(src_w) / src_h) # 按照h做等比缩放
h = int(h)
w = int(w)
if h <= dst_h:
image_dst = cv2.resize(image_src, (dst_w, int(h)))
else:
image_dst = cv2.resize(image_src, (int(w), dst_h))
h_, w_ = image_dst.shape[:2]
top = int((dst_h - h_) / 2)
down = int((dst_h - h_ + 1) / 2)
left = int((dst_w - w_) / 2)
right = int((dst_w - w_ + 1) / 2)
value = [0, 0, 0]
border_type = cv2.BORDER_CONSTANT
image_dst = cv2.copyMakeBorder(image_dst, top, down, left, right, border_type, None, value)
return image_dst
if __name__ == "__main__": if __name__ == "__main__":
app.run() app.run()

4
install.sh Executable file
View File

@ -0,0 +1,4 @@
#/bin/bash
pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple/

View File

@ -1,4 +1,7 @@
Flask==1.1.2 Flask==1.1.2
numpy==1.18.4 numpy==1.19.5
Pillow==7.1.2 Pillow==7.1.2
six==1.15.0 six==1.15.0
tensorflow==2.5.1
opencv-contrib-python==4.5.3.56
opencv-python==4.5.3.56